Synthesis of Condensed Tannins. Part 17.t Oligomeric (2R,3S)-3,3', 4',7,8-Pentahydroxyflavans: Atropisomerism and Conformation of Biphenyl and m Terphenyl Analogues from Prosopis glandulosa ('Mesquite')

Esmé Young, Edward V. Brandt, Desmond A. Young, Daneel Ferreira, and David G. Roux* Department of Chemistry, University of the Orange Free State, P.O. Box 339, Bloemfontein, 9300 South Africa

(2R,3S)-2,3-trans- $3^{\prime}, 4^{\prime}, 7,8$-Tetrahydroxyflavan-3-ol [(+)-mesquitol], the predominant metabolite in the heartwood of Prosopis glandulosa, represents a putative precursor of a variety of oligomers, including conventional [4,6]-and [4,8]-biflavan-3-ols, a [1,6]-1,3-diarylpropylflavan-3-ol, [5,6]-and atropisomeric $[5,8]$-biphenyl-type biflavan-3-ols, and [5,6:5,8]-m-terphenyl-type triflavan-3-ols. Other participants in these condensations are mainly (+)-catechin, and also the flavan-3,4-diol analogue of $(+)$-mesquitol. Oligomeric structures were confirmed by biomimetic oxidative and acidinduced couplings, and by nuclear Overhauser effect difference spectroscopy. These applications enabled correction of previous structural assignments for atropisomeric $[5,8]-(+)$-mesquitol $-(+)$ catechins and $[5,6: 5,8]$-bis- $[(+)$ mesquitol $]-(+)$-catechins, and determination of their conformations.

Although oxidative coupling of flavonoids is an established natural phenomenon affecting mainly flavones and flavanones, ${ }^{1}$ participation by flavan-3-ols in this mode of condensation is uncommon. Examples of the latter all involve $2^{\prime} \longrightarrow 8$ coupling of (+)-catechin (2,3-trans-3', 4, 5,7-tetrahydroxy-flavan-3-ol) via the respective B - and A -ring, giving biphenyltype 'dehydrodicatechins.' ${ }^{2}$ They have been prepared by enzymic oxidation, ${ }^{2}$ or isolated from black tea following fermentative peroxidation, ${ }^{3}$ while bi- and ter-flavan-3-ol analogues, the latter based on a single biphenyl link, occur in the bark of Quercus robur. ${ }^{4,5}$
(+)-Mesquitol, the novel $\ddagger(2 R, 3 S)$-2,3-trans- $3^{\prime}, 4^{\prime}, 7,8-$ tetrahydroxyflavan-3-ol (1), which predominates in the heartwood of the mesquite (Prosopis glandulosa), ${ }^{6}$ should be more susceptible to oxidative coupling than (+)-catechin, considering differences in A -ring functionality (7,8-ortho- vs. 5,7-meta-dihydroxy respectively). Thus, in contrast to [4,6]- and [4,8]-biflavonoids of the 'conventional' type in which (+)mesquitol moieties among others constitute either the 'upper' (5) or 'lower' (11) units, the presence of a [5,6]-dimer' (16), [5,8]-(+)-mesquitol-(+)-catechins (19) and (22), and of atropisomeric $\quad[5,6: 5,8]$-bis-[(+)-mesquitol $]-(+)$-catechins (26) demonstrates an alternative method of tannin formation via oxidative phenol coupling. Yet a third method of oligomerization of the parent flavan-3-ol (1) is illustrated by the ring-opened [1,6]-1,3-diaryl-2-hydroxypropylflavan-3-ol metabolite (13), representing the first homologue of the gamberiins. ${ }^{7}$ Nuclear Overhauser effect (n.O.e.) difference spectroscopy was used to distinguish between positional and structural alternatives for the biphenyl- and m-terphenyl-type oligomers, while the method of synthesis of these and other biflavanoids plausibly illustrates the final steps in their biogenesis.

The heptamethyl diacetyl derivatives of [4,6]-(- -fisetinidol-$(+)$-catechin, (10), and [4,6]-(-)-fisetinidol-(+)-mesquitol, (12), both afford sharp ${ }^{1} \mathrm{H}$ n.m.r. resonances at 80 MHz in

[^0]CDCl_{3} at ambient and progressively elevated temperatures. Among compounds of this class such behaviour is indicative of 'fast' rotation about the interflavanoid bond (n.m.r. time-scale) under ambient conditions. By contrast the octamethyl ether diacetate of the biphenyl-type [5,6]-‘dimer', (17), gives linebroadened resonances, which sharpen to a maximum at $100^{\circ} \mathrm{C}$, while at $500 \mathrm{MHz}\left(20^{\circ} \mathrm{C}\right)$ sharply defined duplicated resonances are evident in accord with its separation into two conformers on preparative layer chromatographic plates. However, after normal work-up procedures the racemate is obtained, the aforementioned phenomena indicating that in these optically labile compounds the activation energy for rotation must be considerably less than $20 \mathrm{kcal} \mathrm{mol}^{-1}{ }^{8} 8$ Identical phenomena are associated with the corresponding derivative of the synthetic [5,5]-'dimer' (25). Next on the scale of stability of rotational isomers of biphenyl-type analogues are the [5,8]-(+)-mesquitol-$(+)$-catechin derivatives (20) and (23), to which the [5,5]'dimeric' structure (25) was previously assigned ${ }^{6}$ (see later). The conformers are readily separable giving sharply defined ${ }^{1} \mathrm{H}$ n.m.r. spectra over the range $30-60^{\circ} \mathrm{C}$, but below $100^{\circ} \mathrm{C}$ slow racemization sets in and at $150^{\circ} \mathrm{C}$ a ca. $4: 3$ equilibrium between R and S forms \llbracket is reached with evidence of exchange from partially broadened resonances.

The relative stabilities of atropisomeric derivatives of $[5,8]-$ $(+)$-mesquitol- $(+)$-catechins (20),(23) to racemization, in contrast to those of [5,6]- and [5,5]-bi-(+)-mesquitols (17) and (25), must be due to rotational restriction imposed by the rigidity of the $\mathrm{C}-4 \mathrm{CH}_{2}$ (c-ring) function; ortho-disubstitution on the D-ring relative to the bond; and also probably to the combined 'buttressing effect' of the 7,8-dimethoxy function on 6-H (A). Consideration of atropisomerism also in the freephenolic [5,8]-(+)-mesquitol-(+)-catechins (19),(22) and [5,6]-bis-(+)-mesquitol (16) follows from their methylation with excess of diazomethane which gave considerable admixtures of 7-hydroxy (D-ring) heptamethyl ethers (to the resultant octamethyl ethers) identified as the respective triacetates (21) and (18). This implies the existence of strong H -bonds between 7-OH(D) and the π-system of the benzenoid A-ring in each instance, in accord with similar findings by Aulin-Erdtman and Sanden ${ }^{9}$ for $2,2^{\prime}$-dihydroxybiphenyl from i.r. spectra. Contri-

[^1]
(1)
(2)

$R^{1}=R^{2}=H$
$R^{1}=M e, R^{2}=A c$
(3)
(4)

(5)
(6)
\[

$$
\begin{aligned}
& R^{1}=R^{2}=H \\
& R^{1}=M e, R^{2}=A C
\end{aligned}
$$
\]

$$
\text { (} 8 \text {) }
$$

(9)
(10)

$$
\begin{align*}
& R^{1}=R^{2}=H \\
& R^{1}=M e, R^{2}=A c \tag{12}
\end{align*}
$$

bution of hydrogen bonding to the stability of atropisomeric biflavanoids with functionality ortho to the biphenyl bond is accordingly postulated. However, no reason can be advanced for the absence of a heptamethyl ether from the products of methylation of compound (22), although partial separation of the [5,8]-atropisomers (19) and (22) during countercurrent distribution, consistent with their stability, is evident.

As may be expected from the aforementioned, dodecamethyl ether triactates of the m-terphenyl-type [5,6:5,8]-bis-[(+)mesquitol $]-(+)$-catechins (26)* were isolated as four stable atropisomers. From ca. $100^{\circ} \mathrm{C}$ and above slow racemization sets in but appears to be incomplete even at $150^{\circ} \mathrm{C}$ in $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$. The increased activation energy for rotation compared with [5,8]-biphenyl analogues (20) and (23) is consistent with the increase in molecular complexity, and predictable steric effects of ortho functionality relative to the interflavanoid bonds.
Synthetic evidence in support of the products of phenol coupling was obtained by treatment of (+)-mesquitol (1) with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ in an acetonitrile-glycine buffer ${ }^{10}$ to give two products. Both [5,6]- and [5,5]-'dimers', obtained as methyl

[^2]ethers in the ratio of $2.5: 1$, were identified as their octamethyl ether diacetates (17) and (25) respectively, the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the former being identical with that of the corresponding derivative of the natural product. However, the synthetic [5,5]-isomer (25) differed, on similar comparison and also in its lability of its atropisomers to racemization, from corresponding derivatives of the second natural biphenyl-type biflavan-3-ol, previously assigned ${ }^{6}$ this structure. Subsequent examination of the conformationally stable derivatives (20) and (23) of the natural atropisomeric [5,8]-(+)-mesquitol-(+)catechins by n.O.e. difference spectroscopy (Schemes 1 and 2) showed not only that the 'residual' D-ring proton was in each instance associated with two methoxy groups, but also defined the bonding positions in both flavanyl units. Substitution by (+)-mesquitol at C-8 of the 'lower' (+)-catechin (DEF) unit was supported by chemical shifts $(\delta 6.22,6.16$) of $6-H(D)$ resonances in each instance (cf. ref. 11). Finally, synthetic proof was available from direct oxidative phenol coupling of molar equivalents of $(+)$-mesquitol and $(+)$-catechin under conditions ${ }^{10}$ cited above. This provided the [5,8]-atropisomers (19) and (22) as major products, identified as their respective octamethyl ether diacetates (20) and (23). They were accompanied by the novel regioisomeric [5,6]-(+)-mesquitol-$(+)$-catechin and [5,6]-bi-(+)-mesquitol as minor components,

(19) $R^{1}=R^{2}=R^{3}=H$
(20) $R^{1}=R^{2}=M e, R^{3}=A c$
(21) $R^{1}=M e, R^{2}=R^{3}=A c$

(24)

(23)

Scheme 1. Schemes 1-5 show proton associations based on nuclear Overhauser effect difference spectroscopy. Arrowheads show enhanced signals with percentage n.O.e. calculated by comparing the size ratio of the positive (enhanced) and negative (irradiated) resonances in each difference spectrum. *Indicates that signal overlap does not permit calculation

(22) $R^{1}=R^{2}=H$
(23) $R^{1}=M e, R^{2}=A C$

(25)

Scheme 2.

(26) $R^{1}=R^{2}=H$
(27) $R^{1}=M e, R^{2}=A C$

(28) $R^{1}=R^{2}=H$
(29) $R^{1}=M e, R^{2}=A C$
isolated as the corresponding derivatives (24) and (17). These products were obtained in the approximate proportions 16:22:1:4, and without evidence of self-condensation of $(+)$ catechin under specified conditions. Thus crossed condensation proceeds at a much faster rate than the oxidative selfcondensations of either (+)-mesquitol or (+)-catechin, judging also by the first appearance of products in, and optimum length of, independent reactions. Phenol couplings of this type are considered to belong to a large class of reactions which do not possess activation energy, ${ }^{12}$ with thermodynamic rather than kinetic factors possibly dominating the course of the reaction. Those factors which may affect the stereochemistry of approach are discussed at a later stage.
The above findings, including the formation under competing conditions of the $[5,6]-(+)$-mesquitol-(+)-catechin,* led to the conjecture that triflavanoid analogues, previously designated as of o-terphenyl-type [5,5:5,6]-ter-(+)-mesquitols (28), did in fact have a 'central' (+)-catechin unit. Application of n.O.e. difference spectroscopy (Scheme 5) to the dodecamethyl ether triacetate of a single atropisomer, $R_{F} 0.50$, adequately supported this surmise through associations of $6-\mathrm{H}(\mathrm{G})$ with the strongly shielded 5- and 7-OMe(D) resonances, and $6-\mathrm{H}(\mathrm{A})$ with $7-$ $\mathrm{OMe}(\mathrm{A})$ and $7-\mathrm{OMe}(\mathrm{D}) . \dagger$ The first mentioned association requires a dihedral angle of $c a .90^{\circ}$ between the G- and D-ring, while the abnormal shielding of 7-OMe(D) in the triflavanoids suggests a similar conformational relationship between the D and A-ring (see later).

[^3]Use of conformational analysis in conjunction with n.O.e. difference spectroscopy permits assessment of the absolute configuration of the [5,8]-(+)-mesquitol- $(+)$-catechin derivative (20), $R_{\mathrm{F}} 0.32$, about the biphenyl bond. The association of $8-\mathrm{OMe}(\mathrm{A})$ with the axial $2-\mathrm{H}(\mathrm{C})$ indicates distortion of the $\mathrm{O}-\mathrm{CH}_{3}$ bond to an out-of-plane conformation relative to the $\mathrm{A}-$ ring as found in 1,2,3-trimethoxybenzenes ${ }^{13}$ (cf. Scheme 2). Further association of $8-\mathrm{OMe}(\mathrm{A})$ with $2-\mathrm{H}, 5-$ and $6-\mathrm{H}(\mathrm{E})$, and of $6-\mathrm{H}(\mathrm{A})$ with $2-\mathrm{H}(\mathrm{F})$, establishes a $[P]$-helicity and (S) conformation, and indicates a dihedral angle of $c a .90^{\circ}$ between the planes of the biphenyl A- and D- ring. Similar evidence is available for its heptamethyl ether triacetate (21) through association of $3-\mathrm{OMe}(\mathrm{E})$ with the axial $2-\mathrm{H}(\mathrm{C})$ (Scheme 3). The

(21)

Scheme 3.
corresponding octamethoxy diacetate isomers (23), $R_{\mathrm{F}} 0.36$, where interflavanyl n.O.e. associations were absent, therefore exhibits [M]-helicity (Scheme 1). Lack of stereochemically significant interflavanyl n.O.e. effects in the [5,6]-isomer (24) (Scheme 4) and the [5,6:5,8]-homologue (27) (Scheme 5),

Scheme 4.
including atropisomers of the latter, precludes similar assignments.

The structure of the [1,6]-1,3-diarylpropylflavan (13) was substantiated by self-condensation of $(+)$-mesquitol (1) under acidic conditions developed by Freudenberg et al. ${ }^{14}$ for synthesis of the homologue derived from (+)-catechin. After methylation and acetylation the condensation products gave the nonamethyl ether diacetate (15), in agreement with the corresponding derivative of the natural product, and also a decamethyl ether acetate (14). Their absolute stereochemistry was defined as ($1 S$) by application of the aromatic quadrant rule to the positive Cotton effects at low wavelengths (232 nm) ($c f$. ref. 15). Considering the apparent absence of the expected

(27)

Scheme 5.
(1R)-diastereoisomer, the natural 1,3-diarylpropylflavan appears to originate predominantly from $S_{\mathrm{N}} 2$ condensation, involving inversion of configuration at the point of junction, with ring opening.

Apart from structural proof via synthetic methods and n.O.e. difference spectroscopy, the aromatic bonding positions and stereochemistry of the majority of the aforementioned compounds were definable in terms of $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. and mass spectroscopy supported in some instances by confirmation of absolute configurations at chiral bonding positions by c.d. spectra. ${ }^{15}$ For example, the octa- and hepta-methyl ether diacetates of [4,8]-(6),(8) and [4,6]-linked (10),(12) biflavanoids were characterized by chemical shifts and coupling constants of heterocyclic protons (AMX and ABXY systems of 'upper' and 'lower' units respectively) in agreement with those of known analogues. ${ }^{16}$ The aromatic bonding positions to $(+)$-catechin units in derivatives (6), (8), and (10) were determined by the chemical shifts of the remaining $\mathrm{D}-$ ring protons, while 6substitution on the novel flavan-3-ol, (+)-mesquitol (1), as in the [4,6]-biflavanoid derivative (12), was established by spindecoupling of $4-\mathrm{H}_{2}(\mathrm{~F})$ resonances which led to selective sharpening of the $5-\mathrm{H}(\mathrm{D})$ singlet.

By comparison the octamethyl ether diacetate (17) of the [5,6]-bi-(+)-mesquitol based on a biphenyl linkage exhibits two heterocyclic ABXY systems [2-H, $\delta 5.11,5.15 ; 3-\mathrm{H}, \delta 5.22$, $5.34 ; 4-\mathrm{H}_{2}, \delta 2.38(\mathrm{~m}, 2 \times \mathrm{H})$ and $\left.2.81(\mathrm{ax}),. 3.08(\mathrm{eq}).\right]$, and two high-field aromatic singlets, one significantly broadened at 80 $\mathrm{MHz}(\delta 6.53)$ and the other sharp ($\delta 6.47$).* Irradiation of the lower-field methylene resonances led to selective sharpening of the aforementioned broadened ($\delta 6.53$, appearing as a triplet, J 0.8 Hz , at 300 MHz) aromatic singlet, thus defining the singlet resonances as due to $5-\mathrm{H}(\mathrm{D})$ and $6-\mathrm{H}(\mathrm{A})$ respectively, and hence the interflavanoid bond as $[5,6]$. The presence of a biphenyl moiety is supported by mass spectrometry, the fragment ions $m / z 331$ (45%) and 330 (38%) representing the A - and D-ring biphenyl 'residue' after two reverse Diels-Alder (RDA) fragmentations with and without H-transfer, the former process being exceptionally prominent in the tetramethyl ether acetate of the parent (+)-mesquitol, compound (2) [m/z $167(72 \%), 166$ (8.1)]. The u.v. absorption spectrum ($\lambda_{\text {max. }} 230,275 \mathrm{~nm}$) of compound (17) exhibits a shoulder at 255 nm indicative of a

[^4]degree of biphenyl conjugation, ${ }^{17.18}$ thus contrasting with an absorption minimum at 255 nm for the [4,6]-biflavanoid derivative (12) ($\lambda_{\text {max. }} 233,276 \mathrm{~nm}$).

Identical spectral characteristics were evident for the corresponding derivative of the synthetic [5,5]-positional isomer (25) with the exception that both remaining [6-H(A) and $6-\mathrm{H}(\mathrm{D})$] resonances ($\delta 6.41,6.51$ in CDCl_{3} at 300 MHz) are devoid of long-range coupling.

The atropisomeric octamethyl ether diacetates (20) and (23) of [5,8]-(+)-mesquitol-(+)-catechin exhibited spectral characteristics [two ABXY heterocyclic systems each; $m / z 774$ (M^{+}, $100,100 \%$), $331(67,74), 330(66,74) ; \lambda_{\text {max. }} 227, \sim 254 \mathrm{sh}, 273 \mathrm{~nm}$ each] similar to those of the [5,5]-bis-(+)-mesquitol analogue, including aromatic proton singlets ($\delta 6.22,6.50$ and $6.16,6.41$ respectively) devoid of long-range coupling. Significant differences were, however, the high-field positions ($\delta 6.22,6.16$) of their 6-H(D) resonances attributable to the enhanced mesomeric effect of the phloroglucinol D-ring (cf. ref. 11). The synthetic [5,6]-isomer (24) with aromatic singlets at $\delta 6.48$ and 6.36 [$6-H(A)$ and $8-H(D)$ respectively] is differentiated by a strongly shielded (δ 3.14) 5-OMe (D-ring) resonance, similar to conspicuous shifts which characterize spectra of $[5,6: 5,8]-m$ terphenyl analogues.

Extension of the same condensation mode to the triflavanoid level in P. glandulosa was evident from the isolation of the four possible dodecamethyl ether triacetates (27) [$R_{\mathrm{F}} 0.60,0.56,0.54$, and 0.50 in dichloromethane-acetone ($96: 4 \mathrm{v} / \mathrm{v}$); $m / z 1160\left(M^{+}\right.$, $49,13.7,52$, and 47% respectively] of $[5,6: 5,8]$-bis- $[(+)-$ mesquitol]-(+)-catechin with presumed origins in both of the [5,8]-conformers (19) and (22). The four m-terphenyl derivatives exhibit the same spectral characteristics as their biphenyl analogues [$\lambda_{\text {max. }} 222, \sim 253 \mathrm{sh}, 274 \mathrm{~nm}$]; two sharp resonances each in the high-field aromatic region ($\delta 6.52,6.44 ; 6.56,6.53$; $6.61,6.50$; and $6.59,6.56$ respectively in CDCl_{3}) all lacking longrange coupling with their respective $4-\mathrm{H}_{2}$ resonances; and two exceptionally shielded methoxy-group proton resonances each ($\delta 3.38,2.91 ; 3.20,3.08 ; 3.25,3.06$; and $3.33,3.05$ respectively). The chemical shifts of the aromatic $6-\mathrm{H}(\mathrm{A})$ and $6-\mathrm{H}(\mathrm{G})$ singlets are in agreement with those of 5 -linked (+)-mesquitol units in the [5,8]-biflavanoid analogues (20) and (23) [6-H(A), $\delta 6.50$, $6.41]$ and [5,6]- and [5,5]-dimers' [6-H(A), $\delta 6.47$ and 6.41/6.51], indicating similar linkage by two (+)-mesquitol units to a bifuncationalized D-ring of a central flavan-3-ol unit in the triflavanoid.

In agreement with assignment based on n.O.e. difference spectroscopy, indirect evidence regarding substitution on the D-ring of the 'central' flavanyl unit may be derived from the strong shielding effects of aromatic rings on D-ring methoxygroup resonances where these are ortho to interflavanoid bonds. Shielded OMe resonances are, for example, absent from the ${ }^{1} \mathrm{H}$ n.m.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$ of the synthetic [5,5$]$-‘dimer' (25) due to lack of overlap, but are differentiated in the case of the [5,6]'dimer' (17) ($\delta 3.54$), \dagger the $[5,8]$-atropisomers (23) and (20) (δ $3.63,3.57$ respectively), and the [5,6]-isomer (24) ($\delta 3.14$). Although the degree of shielding of $7-\mathrm{OMe}(\mathrm{D})$ resonances in the biflavanoid analogues (20) and (23) does not match those (δ 2.91 -3.38) in each of the atropisomeric m-terphenyl derivatives (27), it is obvious that $7-\mathrm{OMe}(\mathrm{D})$ groups are sandwiched between the A - and G-ring in the triflavanoids (see earlier discussion on n.O.e. difference spectroscopy) and hence are subject to enhanced shielding effects. Abnormal shielding of a single methoxy-group resonance in the case of the [5,6]analogue (24) implies overlap of the A-ring by $5-\mathrm{OMe}(\mathrm{D}) \ddagger$

[^5]rather than 7-OMe(D), although the enhanced effect cannot be rationalized in this instance.

The c.d. spectra of the octamethyl ether diacetates (20) and (23) of $[5,8]-(+)$-mesquitol- $(+)$-catechin atropisomers exhibit positive Cotton effects ($[\theta] \times 10^{-4}+2.2$ and +2.3 respectively) at $225-240 \mathrm{~nm}$ (Figure 1); absorptions which are also representative of the corresponding derivatives of the $[5,6]$ isomer (24) and the 'racemic' [5,5]- and [5,6]-dimers' of (+)-mesquitol (25) and (17). These Cotton effects appear to be

Figure 1. C.d. spectra of the octamethyl ether diacetates of atropisomeric [5,8]-(+)-mesquitol-(+)-catechins, (20) (1) and (23) (2), and of the tetramethyl ether acetates of $(+)$-mesquitol (2) (3) and $(+)$-catechin (4)
largely independent of differences in functionality of the diphenyl system and of atropisomerism, although falling within the conjugation band of Cotton effects attributed to simple biphenyls. ${ }^{19}$ However, derivatives of each of the atropisomers (20) and (23) show high-amplitude negative and positive Cotton effects at lower wavelengths (205-220 nm) ($[\theta] \times 10^{-4}-4.5$ and +5.1 respectively, Figure 1), attributable to the ${ }^{1} B_{\mathrm{b}}$ transition. ${ }^{20}$ Comparison with similar absorptions for binaphthyls ${ }^{21}$ indicate left- and right-handed screwness respectively, namely opposite conformations to those assigned by n.O.e. difference spectroscopy. The sign of the Cotton effects in these instances may depend on the dihedral angle as in some binaphthyls, leading to reversal. ${ }^{21}$ The [5,6:5,8]-m-terphenyl analogues (27) all exhibit the expected higher amplitude positive Cotton effects at $c a .230 \mathrm{~nm}$, one of $R_{\mathrm{F}} 0.56$ being of exceptional intensity (Figure 2). Two atropisomers, $R_{F} 0.50$ and 0.54 , also give strongly negative effects at $200-210 \mathrm{~nm}$.

The possible stereochemical mechanism of oxidative condensation of $(+)$-mesquitol with $(+)$-catechin to form [5,8]- and [5,6]-biflavanoids and also its self-condensation to give [5,6]and [5,5]-‘dimers' may be considered speculatively to involve a 'sandwich transition state' as postulated by Nonhebel and coworkers ${ }^{12}$ for phenols. From electron spin-density considerations alone, the C-6 position (ortho to $7-\mathrm{OH}$) of (+)-mesquitol is less favoured for coupling than is $\mathrm{C}-5$ (para to $8-\mathrm{OH}$), and for similar reasons $\mathrm{C}-8$ of $(+)$-catechin (para to $5-\mathrm{OH}$) is favoured

Figure 2. C.d. spectra of the dodecamethyl ether triacetates of atropisomeric [5,6:5,8]-bis-[$(+)$-mesquitol $]-(+)$-catechins, (27)
over C-6 (ortho to $5-\mathrm{OH}$ and $7-\mathrm{OH}$), the spin density at parapositions of phenoxyl radicals being twice that at orthopositions. ${ }^{22}$ As regards steric contributions, examination of Dreiding models indicates that (+)-mesquitol units may approach each other in an 'eclipsed' sandwich alignment for $6 \longrightarrow 6$ and $5 \longrightarrow 5$ coupling, but that electrostatic (oxygens) and steric repulsions (axial $2-\mathrm{H}$ and $3-\mathrm{H}$, and $4-\mathrm{H}_{2}$ interactions) are at a maximum, rendering coupling via this approach unlikely (cf. Figure 3 and Table). However, for $5 \longrightarrow 5$ coupling a single staggered approach with low non-bonded interaction (Table) is feasible, while for the favoured in vitro and in vivo $5 \longrightarrow 6$ dimerization two staggered approaches are possible, each representative of a low degree of non-bonded interactions.

The speed ($>\times 4$) of the 'mixed' (+)-mesquitol- $(+)$ catechin $5 \longrightarrow 8$ oxidative coupling relative to that of selfcondensation of each flavan-3-ol is of significance, being permitted by a single favourably staggered conformation combined with high electron spin-densities at the point of coupling of each unit. This could account for the natural predominance of [5,8]-(+)-mesquitol-(+)-catechin (19),(22); their preferential formation during synthesis; and the selective in vivo extension of condensation to [5,6:5,8]-bis-[(+ -mes-quitol]-(+)-catechins in spite of evidence of the transient existence of $(+)$-catechin in P. glandulosa. However, $5 \longrightarrow 6$ coupling of $(+)$-mesquitol represents a minor mode under competitive conditions, due presumably to a combination of enhanced steric repulsion and less favourable electron spindensities at the points of junction. Chromatographic evidence of in vitro formation of $[5,6: 5,8]$ - m-terphenyls (26) was available only when applying an initial 5:1 molar excess of $(+)$-mesquitol over (+)-catechin. Under these conditions* the sustained

[^6](+) - mesquitol dimerization
[5,5]-coupling

(+)-mesquitol dimerization
[5,6]-coupling
staggered conformation A

$(+)$-mesquitol-(+)-catechin coupling [5,8]-coupling
staggered conformation A

staggered conformation B
staggered conformation B

Figure 3. Stereochemistry of approach of (+)-mesquitol and $(+)$-catechin units.
excess of $(+)$-mesquitol, while permitting its [5,6]-dimerization, also allows further oxidative coupling at $\mathrm{C}-6(\mathrm{D})$ of the rapidly formed [5,8]-(+)-mesquitol-(+)-catechins. These stoicheiometric requirements are presumably those which pertain in P. glandulosa.

Although no evidence was found of either (+)-catechin or $(+)$-mollisacacidin in the heartwood of P. glandulosa, $(+)$ catechin must serve as 'nucleophile' in the biogenesis of the biflavanoids (5), (7), and (9), and (+)-mollisacacidin as potential electrophile for (7), (9), and (11). Inference of their transient existence is supported by synthesis of [4,6]-2,3-trans-3,4-cis-(- -fisetinidol-2,3-trans-(+)-mesquitol (11) by acid-induced condensation of $(+)$-mollisacacidin with (+)mesquitol, which also yielded the 3,4-trans-isomer and a linear [4,6:4,6]-2,3-trans-3,4-cis:2,3-trans-3,4-trans-bis-(-)-fisetinidol-2,3-trans-(+)-catechin. Similarly, [4,8]-2,3-trans-

3,4-trans-(+)-mesquitol-2,3-trans-(+)-catechin was available synthetically as the octamethyl ether diacetate (6) by initial oxidative 4 -methoxylation of (+)-3-O-acetyl- $3^{\prime}, 4^{\prime}, 7,8$-tetra- O methylmesquitol with 2,3 -dichloro- 5,6 -dicyano- p-benzoquinone (DDQ) in $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (cf. ref. 23); condensation of the product with (+)-catechin; and subsequent full methylation and acetylation. The desired compound was isolated from the expected mixture of $[4,6]$ - and $[4,8]-$ diastereoisomers of 3,4-trans and 3,4-cis configuration which was produced.* The free phenolic $[4,8]-(+)$-mesquitol $-(+)$ catechin metabolite (5) plausibly results in vivo from a

[^7]Table. The stereochemistry of approach: steric interactions and electrostatic repulsions

Non-bonded interactions		
[5,5]-Coupling ('dimerization' of mesquitol)		
Eclipsed conformation	Staggered conformation	
$\overbrace{\text { Upper unit }}$ Lower unit	Upper unit	Lower unit
C-2 2-H	$7-\mathrm{OH}$	O-1
3-H $\mathrm{C}-3$	O-1	$7-\mathrm{OH}$
$\mathrm{CH}_{2} \quad \mathrm{CH}_{2}$	$8-\mathrm{OH}$	$8-\mathrm{OH}$
2-Ar 2-Ar		
O-1 O-1		
$3-\mathrm{OH}$		
$7-\mathrm{OH}$ 7-OH		
$8-\mathrm{OH}$		
[5,6]-Coupling ('dimerization' of mesquitol)		
Staggered conformation A	Staggered conformation B	
$\overbrace{\text { Upper unit }}^{\text {Lower unit }}$	Upper unit	Lower unit
$8-\mathrm{OH} \quad \mathrm{O}-1$	CH_{2}	$\mathrm{O}-1$
$7-\mathrm{OH} \quad \mathrm{CH}_{2}$	O-1	$8-\mathrm{OH}$
$\mathrm{CH}_{2} \quad 7-\mathrm{OH}$	$8-\mathrm{OH}$	$7-\mathrm{OH}$
O-1 8-OH		
[5,8]-Coupling (mesquitol-catechin)		
$8-\mathrm{OH} \quad 5-\mathrm{OH}$	$8-\mathrm{OH}$	$5-\mathrm{OH}$
$7-\mathrm{OH} \quad \mathrm{CH}_{2}$	O-1	CH_{2}
$\mathrm{CH}_{2} \quad 7-\mathrm{OH}$	CH_{2}	O-1
	$3-\mathrm{OH}$	$2-\mathrm{Ar}$
	$2-\mathrm{Ar}$	$3-\mathrm{OH}$

condensation involving the 2,3-trans-3,4-cis-flavan-3,4-diol analogue (3) of (+)-mesquitol as potential electrophile.

The $[5,8]-(+)$-mesquitol-(+)-catechins (19),(22) and [5,6:5,8]-bis-[(+)-mesquitol $]-(+)$-catechins (26) are unique in that they represent the first examples of stable atropisomeric biand ter-flavanoid condensed tannins.

Experimental

${ }^{1}$ H N.m.r. spectra were recorded on Bruker WP-80 FT and AM- 300 spectrometers, with $\mathrm{CDCl}_{3},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$, and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ as solvents with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. Tubes were firmly stoppered to avoid solvent loss where spectra were recorded above the boiling point $\left(100^{\circ} \mathrm{C}\right)$ of CDCl_{3}. Mass spectra were obtained with a Varian $\mathrm{CH}-5$ instrument, and c.d. data in methanol on a Jasco J-20 spectropolarimeter. T.l.c. was performed on precoated Merck plastic sheets (silica gel 60 $\mathrm{PF}_{254}, 0.25 \mathrm{~mm}$) and were sprayed with $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{HCHO}(40: 1$ v / v) after development. Preparative plates (p.l.c.), $20 \times 20 \mathrm{~cm}$, Kieselgel $\mathrm{PF}_{254}(1.0 \mathrm{~mm})$ were air-dried and used without prior activation. Two-way paper chromatograms on Whatman No. 1 paper ($28.5 \times 46 \mathrm{~cm}$) were developed successively in butan-2-ol and 2% acetic acid. Preparative paper chromatography (p.p.c.) was performed on Whatman No. 3 paper ($47 \times 57 \mathrm{~cm}$) by upward development in 2% or 20% acetic acid. After drying, component bands were located under u.v. light or with the aid of spray reagents. Separations on Sephadex LH-20 columns $(2.6 \times 120 \mathrm{~cm})$ were in ethanol, applying 2.0 g phenol per column. Fractions (15 ml each) were collected on a rotary fraction collector, starting with introduction of the sample on the column.

Alkali fusions were performed under anhydrous conditions. ${ }^{24}$ Methylations were with an excess of diazomethane in methanoldiethyl ether during 48 h at $-15^{\circ} \mathrm{C}$, while acetylations were in acetic anhydride-pyridine at room temperature. Evaporations were done under reduced pressure at $c a .60^{\circ} \mathrm{C}$ in a rotary evaporator. N.m.r. spectra (300 MHz) provided criteria of purity of the various atropisomers.

Isolation

Drillings (4.05 kg) from the heartwood of Prosopis glandulosa were exhausitively extracted with methanol (5×21) during 5 days at room temperature. The solutions were combined, and after removal of the solvent the powdered extract was dewaxed with hexane in the cold to give a pale brown amorphous powder $(603 \mathrm{~g})$.

The powder (20 g) was dissolved in the lower phase $(200 \mathrm{ml})$ of a water-butan-2-ol-n-hexane (5:4:1 v/v) system, and subjected to countercurrent distribution (20 plates) using an equivalent volume upper phase. The content of each plate was examined by two-way chromatography and the fractions were combined as follows: upper phase plates ($1-4$), (5-6), (7-10), $(11-13),(14-16)$, and (17-20), and lower phase plates (1-3), $(4-5),(6-7),(8-10),(11-13)$, and $(14-16)$. The liquidliquid separation was repeated 5 times, and each of the combined fractions was separated on a Sephadex LH-20 column.
(2R,3S)-2,3-trans-3, 3', 4'-7,8-Pentahydroxyflavan (1).-Plates 7-10 (upper phase) contained the main component from P. glandulosa, but this was nevertheless subjected to column chromatography on Sephadex when tubes 41-70 were combined. After further purification by t.l.c. in benzene-acetone-methanol ($6: 3: 1 \mathrm{v} / \mathrm{v}$), the title compound was obtained as an amorphous solid ($450 \mathrm{mg} ; R_{\mathrm{F}} 0.53$) which failed to crystallize from water; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} ; 80 \mathrm{MHz} ; 31^{\circ} \mathrm{C}\right] 2.63$ (dd, J 8.0 and $15.0 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{ax}}$), 2.88 (dd, $J 5.0$ and $15.0 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{eq}}$.), 3.92 ($\mathrm{m}, 3-\mathrm{H}$), 3.92 (br s, $3-\mathrm{OH}$), $4.53(\mathrm{~d}, J 7.25 \mathrm{~Hz}, 2-\mathrm{H}), 6.25$ (s, $5-+6-\mathrm{H}), 6.47-6.72\left(\mathrm{~m}, 2^{\prime}-, 5^{\prime}-\right.$, and $\left.6^{\prime}-\mathrm{H}\right)$, and $7.44(\mathrm{br} \mathrm{s}$, $4 \times$ phenolic OH); alkali fusion gave pyrogallol and protocatechuic acid; c.d. $[\theta]_{300} 0,[\theta]_{280}-1340,[\theta]_{255}-180,[\theta]_{223}$ -16570 , and $(\theta]_{207} 0$.
(2R,3S)-2,3-trans-3-Hydroxy-3', 4',7,8-tetramethoxyflavan.
Methylation of the phenol (1) (150 mg) followed by t.l.c. separation in benzene-acetone ($8: 2 \mathrm{v} / \mathrm{v}$) gave the tetramethyl ether ($R_{\mathrm{F}} 0.33 ; 106 \mathrm{mg}$) which crystallized from ethanol as needles, m.p. $137^{\circ} \mathrm{C}$.
(2R,3S)-2,3-trans-3-Acetoxy-3',4',7,8-tetramethoxyflavan (2). Acetylation of the above tetramethyl ether (106 mg) gave the monoacetate (2) (96 mg), $R_{\mathrm{F}} 0.38$ in benzene-acetone ($8: 2 \mathrm{v} / \mathrm{v}$), which crystallized from ethanol as needles, m.p. $114^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 64.5 ; \mathrm{H}, 6.3 . \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{7}$ requires $\left.\mathrm{C}, 64.5 ; \mathrm{H}, 6.2 \%\right) ; \delta\left(\mathrm{CDCl}_{3}\right.$; $80 \mathrm{MHz} ; 31{ }^{\circ} \mathrm{C}$) $6.75-6.50\left(\mathrm{~m}, 2^{\prime}-, 5^{\prime}-\right.$, and $\left.6^{\prime}-\mathrm{H}\right), 6.50(\mathrm{br} \mathrm{d}, J 8.1$ $\mathrm{Hz}, 5-\mathrm{H}), 6.30(\mathrm{~d}, J 8.1 \mathrm{~Hz}, 6-\mathrm{H}), 5.16(\mathrm{~m}, 3-\mathrm{H}), 5.06(\mathrm{~d}, J \sim 8.5 \mathrm{~Hz}$, $2-\mathrm{H}), 3.75,3.70(\times 2)$, and 3.66 (each s, $4 \times$ OMe), $2.84(\mathrm{dd}, J$ ~ 7.5 and $15.8 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{eq}}$), 2.64 (dd, $J \sim 10.0$ and $15.8 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{ax} .}$), and $1.88(\mathrm{~s}, 3-\mathrm{OAc}) ; \delta\left(\mathrm{C}_{6} \mathrm{D}_{6} ; 80 \mathrm{MHz} ; 31^{\circ} \mathrm{C}\right) 3.81,3.34$, and $3.28(\times 2)(4 \times \mathrm{OMe}) ; m / z 388\left(\mathrm{M}^{+}, 59 \%\right.$), 346 (59), $329(56)$, 328 (76), 313 (43), 297 (16.8), 222 (56), 210 (30), 209 (12), 180 (100), 167 (50), 163 (18.4), and 151 (73); c.d. (Figure 1).
(2R,3S,4S)-2,3-trans-3,4-cis-3,4-Diacetoxy-3', 4', 7,8-tetramethoxyflavan (4).-The contents of plates 5-6 (upper phase) were resolved on a Sephadex column, tubes 20-37 containing a single component. Alkali fusion gave pyrogallol and protocatechuic acid only. Methylation of the free phenol (3) $(80 \mathrm{mg})$ with diazomethane, followed by p.l.c. of the product in 1,2-dichloroethane-ethanol ($8: 2 \mathrm{v} / \mathrm{v}$) gave the tetramethyl ether
($3.8 \mathrm{mg} ; R_{\mathrm{F}} 0.31$). Acetylation of the tetramethyl ether gave the diacetate (4) as a solid [$3.0 \mathrm{mg} ; R_{\mathrm{F}} 0.09$ in benzene-acetone ($9: 1$ v / v)] (Found: $M^{+}, 446.457$ 93. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{9}$ requires M, 446.45827); $\delta\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz} ; 30^{\circ} \mathrm{C}\right) 7.00($ br d, $J 8.5 \mathrm{~Hz}, 5-\mathrm{H}$), $7.00-6.75\left(\mathrm{~m}, 2^{\prime}-, 5^{\prime}-\right.$, and $\left.6^{\prime}-\mathrm{H}\right), 6.56(\mathrm{~d}, J 8.5 \mathrm{~Hz}, 6-\mathrm{H}), 6.14(\mathrm{dd}$, $J 0.6$ and $6.0 \mathrm{~Hz}, 4-\mathrm{H}$), 5.44 (dd, $J 6.0$ and $9.7 \mathrm{~Hz}, 3-\mathrm{H}$), 5.23 (d, J $9.7 \mathrm{~Hz}, 2-\mathrm{H}), 3.89,3.86(\times 2)$, and 3.81 (each s, $4 \times \mathrm{OMe}$), 2.11 ($\mathrm{s}, 4-\mathrm{OAc}$), and 1.84 (s, 3-OAc); $m / z 446$ ($M^{+}, 52 \%$), 387 (15.4), 386 (37), 344 (61), 328 (50), 327 (93), 326 (28), 316 (50), 301 (26), 224 (41), 222 (49), 211 (7.1), 210 (17.6), 180 (100), 165 (46), and 151 (51).

The contents of plates 4-5 (lower phase) gave an indication of a single component by two-way chromatography, but alkali fusion gave pyrogallol, resorcinol, phloroglucinol, and protocatechuic acid as degradation products, indicating complexity. Methylation of the phenolic mixture (300 mg) followed by p.l.c. separation in benzene-acetone ($8: 2 \mathrm{v} / \mathrm{v}$) gave two products at $R_{\mathrm{F}} 0.63(30 \mathrm{mg})$ and $0.61(27 \mathrm{mg})$.
(2R,3S)-2,3-trans-3-Acetoxy-6-[(2R,3S,4S)-2,3-trans-3,4-trans-3-acetoxy-3', 4',7-trimethoxyflavan-4-yl]-3', 4',5,7-tetramethoxyflavan (10). Acetylation of the $R_{\mathrm{F}} 0.63$ methyl ether, followed by p.l.c. separation in n-hexane-acetone-ethyl acetate ($60: 25: 15 \mathrm{v} / \mathrm{v}$) gave the heptamethyl ether diacetate (10) of [4,6]-(-)-fisetinidol-(+)-catechin (9) as a solid ($R_{\mathrm{F}} 0.27 ; 6.5$ mg) identical with that obtained by synthesis ${ }^{16}$ as regards ${ }^{1} \mathrm{H}$ n.m.r. $\left(100^{\circ} \mathrm{C} ; \mathrm{CDCl}_{3}\right)$, mass, and c.d. spectra (Found: M^{+}, 744.797 67. Calc. for $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{13}: M, 744.80003$).
(1S,2R)-2-Acetoxy-1-[(2R,3S)-2,3-trans-3-acetoxy-3', $4^{\prime}, 7,8$ -tetramethoxyflavan-6-yl]-1-(3,4-dimethoxyphenyl)-3-(2,3,4trimethyoxyphenyl)propane* (15). Acetylation of the methyl ether, $R_{\mathrm{F}} 0.61$, followed by p.l.c. separation in n -hexane-acetone-ethyl acetate ($60: 25: 15 \mathrm{v} / \mathrm{v}$) gave the title nonamethyl ether diacetate as a solid, $R_{\mathrm{F}} 0.22(7.3 \mathrm{mg})$; (Found: M^{+}, $790.31638 . \mathrm{C}_{43} \mathrm{H}_{50} \mathrm{O}_{14}$ requires $M, 790.32006$); $\delta\left(\mathrm{CDCl}_{3} ; 300\right.$ $\left.\mathrm{MHz} ; 24^{\circ} \mathrm{C}\right) 6.96$ [dd, $J 2.5$ and $\left.8.5 \mathrm{~Hz}, 6-\mathrm{H}(\mathrm{B})\right], 6.89$ [d, $J 1.9$ $\mathrm{Hz}, 2-\mathrm{H}(\mathrm{B})], 6.86$ [dd, $J 1.9$ and $8.0 \mathrm{~Hz}, 6-\mathrm{H}(\mathrm{E})], 6.825$ [s, 5H(D)], 6.82 [d, $J 8.0 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{E})], 6.805$ [d, $J 8.0 \mathrm{~Hz}, 5-\mathrm{H}(\mathrm{B})], 6.78$ $[\mathrm{d}, J 8.1 \mathrm{~Hz}, 5-\mathrm{H}(\mathrm{E})], 6.71[\mathrm{~d}, J 8.5 \mathrm{~Hz}, 6-\mathrm{H}(\mathrm{A})], 6.50[\mathrm{~d}, J 8.5 \mathrm{~Hz}$, $5-\mathrm{H}(\mathrm{A})], 5.80(\mathrm{~m}, 2-\mathrm{H}), 5.25[\mathrm{~m}, 3-\mathrm{H}(\mathrm{F})], 5.10[\mathrm{~d}, J 6.0 \mathrm{~Hz}, 2-$ $\mathrm{H}(\mathrm{F})], 4.51(\mathrm{~d}, J 10.0 \mathrm{~Hz}, 1-\mathrm{H}), 3.88,3.835(\times 3), 3.82,3.80,3.797$, 3.785 , and 3.787 (each s, $9 \times \mathrm{OMe}$), 2.98 (dd, $J 3.0$ and 14.0 Hz , $3-\mathrm{H}), 2.87$ [dd, $J 4.5$ and $16.0 \mathrm{~Hz}, 4-\mathrm{H}_{\text {eq. }}$ (F)], 2.725 [dd, $J 7.0$ and $16.0 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{ax} .}$ (F)], 2.49 [dd, $J 9.0$ and $\left.14.0 \mathrm{~Hz}, 3-\mathrm{H}\right], 1.91$ [s, 3$\mathrm{OAc}(\mathrm{F})]$, and 1.62 (s, 2-OAc); $m / z 790\left(\mathrm{M}^{+}, 2.5 \%\right.$), 730 (12.8), 670 (2.8), 537 (100), 495 (19.7), 477 (5.3), 343 (2.8), 329 (2.8), 327 (4.4), 300 (1.8), 253 (2.2), 222 (2.0), 193 (2.8), 181 (30), 180 (25), 179 (4.2), 167 (10.7), 166 (8.8), 151 (72), and 149 (7.4); c.d. [$\theta]_{290}$ $0,[\theta]_{270}-1250,[\theta]_{258} 0,[\theta]_{232}+10000,[\theta]_{218}+4500$, $[\theta]_{214}+39000,[\theta]_{211}+21000,[\theta]_{210}+25000$, and $[\theta]_{200} 0$.
(2R,3S)-2,3-trans-3-Acetoxy-8-[(2R,3S,4R)-2,3-trans-3,4-cis-3-acetoxy-3', $4^{\prime}, 7$-trimethoxyflavan-4-yl]-3',4, 5,7-tetramethoxyflavan (8).-The contents of plates $14-16$ (lower phase) appeared to consist of a single component after purification on a Sephadex column (tubes $64-131$), $R_{F} 0.48,0.36$ (two-way paper chromatography). Alkali fusion gave resorcinol, phloroglucinol, and protocatechuic acid. Methylation with diazomethane, followed by purification by p.l.c. in benzene-acetone ($8: 2 \mathrm{v} / \mathrm{v}$), gave a major product, $R_{\mathrm{F}} 0.39(22.8 \mathrm{mg})$. Acetylation of the heptamethyl ether followed by p.l.c. in benzene-acetone ($9: 1$ v / v) gave the heptamethyl ether diacetate (8) as a solid, $R_{\mathrm{F}} 0.62$ (21.9 mg) (Found: $M^{+}, 744.799$ 38. Calc. for $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{13}: M$, 744.80003); ${ }^{1} \mathrm{H}$ n.m.r. $\left[150{ }^{\circ} \mathrm{C} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$, mass fragmentation,

[^8]and c.d. spectra were in agreement with those of the synthetic product. ${ }^{16}$
(2R,3S)-2,3-trans-3-Acetoxy-6-[(2R,3S,4R)-2,3-trans-3,4-cis-3-acetoxy-3', $4^{\prime}, 7$-trimethoxyflavan-4-yl]-3', $4^{\prime}, 7,8$-tetramethoxyflavan (12).-The contents of plates 5-6 (upper phase) appeared to consist of a single component, $R_{\mathrm{F}} 0.47,0.36$, by twoway paper chromatography, after separation on a Sephadex column (tubes 120-130). Alkali fusion gave resorcinol, pyrogallol, and protocatechuic acid. Methylation with diazoacetone (60 mg) followed by p.l.c. in 1,2 -dichloroethaneacetone ($9: 1 \mathrm{v} / \mathrm{v}$) gave a single product, $R_{\mathrm{F}} 0.86(28.3 \mathrm{mg})$. Acetylation of the heptamethyl ether followed by p.l.c. in benzene-acetone ($8: 2 \mathrm{v} / \mathrm{v}$) gave the diacetate (12) as a solid, R_{F} 0.52 (17.9 mg) (Found: C, 66.1; H, 6.0. $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{13}$ requires C, $66.1 ; \mathrm{H}, 5.8 \%$); $\delta\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz} ; 30^{\circ} \mathrm{C}\right) 7.03-6.70(\mathrm{~m}$, $7 \times \mathrm{ArH}), 6.59[\mathrm{~d}, J 2.0 \mathrm{~Hz}, 8-\mathrm{H}(\mathrm{A})], 6.47$ [dd, $J 2.0$ and 8.1 Hz , $6-\mathrm{H}(\mathrm{A})], 6.39$ (br s, $5-\mathrm{H}(\mathrm{D})], 5.52$ [dd, $J 4.8$ and $7.0 \mathrm{~Hz}, 3-\mathrm{H}(\mathrm{C})$], $5.31[\mathrm{~m}, 3-\mathrm{H}(\mathrm{F})], 5.20$ [d, $J 7.0 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{C})], 5.11[\mathrm{~d}, J 6.5 \mathrm{~Hz}, 2-$ $\mathrm{H}(\mathrm{F})], 4.66[\mathrm{~d}, J 4.8 \mathrm{~Hz}, 4-\mathrm{H}(\mathrm{C})], 3.89,3.88(\times 2), 3.84(\times 2), 3.80$, and 3.78 (each s, $7 \times \mathrm{OMe}$), $2.98\left[\mathrm{dd}, 4\left(\mathrm{H}_{\text {eq. }} . \mathrm{F}\right)\right], 2.69$ [dd, $4-$ $\mathrm{H}_{\mathrm{ax} .}$ (F)], 1.94 [s, 3-OAc(F)], and 1.84 [s, 3-OAc(C)]; $m / z 744$ ($M^{+}, 42 \%$), 685 (23), 684 (48), 626 (3.6), 625 (9.2), 624 (7.1), 522 (0.8), 492 (19.5), 491 (69), 463 (7.5), 462 (10.1), 450 (7.2), 449 (26), 443 (3.6), 432 (3.6), 431 (10.5), 387 (1.2), 357 (1.2), 300 (2.2), 269 (15.1), 222 (14.8), 180 (100), and 151 (90).

The contents of plates $1-3$ (lower phase) gave the appearance of a single component by two-way paper chromatography, $R_{\mathrm{F}} 0.44,0.42$, after separation on a Sephadex column (tubes $37-75)$. Methylation of the purified phenol (475 mg) with diazomethane gave a mixture of methyl ethers which were resolved by p.l.c. in 1,2-dichloroethane-acetone ($85: 15 \mathrm{v} / \mathrm{v}$) to afford compounds with $R_{\mathrm{F}} 0.18$ (30 mg) and $0.24(71 \mathrm{mg})$.
(2R,3S)-2,3-trans-3-Acetoxy-8-[(2R,3S,4S)-2,3-trans-3,4-trans-3-acetoxy- $3^{\prime}, 4^{\prime}, 7,8$-tetramethoxyflavan-4-yl $]-3^{\prime}, 4^{\prime}, 5,7-$ tetramethoxyflavan (6). Acetylation of the octamethyl ether, R_{F} 0.18 , gave the octamethyl ether diacetate (6) as a solid (28.7 mg), $R_{\mathrm{F}} 0.52$ in benzene-acetone ($8: 2 \mathrm{v} / \mathrm{v}$) (Found: C, $65.1 ; \mathrm{H}, 6.0$. $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{14}$ requires $\left.\mathrm{C}, 65.0 ; \mathrm{H}, 6.0 \%\right) ; \delta\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right.$; $\left.100^{\circ} \mathrm{C}\right) 7.00-6.56(\mathrm{~m}, 6 \times \mathrm{ArH}), 6.39[\mathrm{~s}, 5-\mathrm{H}(\mathrm{A})+6-\mathrm{H}(\mathrm{A})]$, $6.16[\mathrm{br} \mathrm{s}, 5-\mathrm{H}(\mathrm{D})], 5.95[\mathrm{t}, J 9.9 \mathrm{~Hz}, 3-\mathrm{H}(\mathrm{C})], 5.03[\mathrm{~m}, 3-\mathrm{H}(\mathrm{F})]$, $4.88[\mathrm{~d}, J 9.9 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{C})], 4.84[\mathrm{~d}, J 7.8 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{F})], 4.80[\mathrm{~d}, J 9.9$ $\mathrm{Hz}, 4-\mathrm{H}(\mathrm{c})], 3.78(\times 5), 3.72,3.67$, and 3.66 (each s, $8 \times \mathrm{OMe}$), 3.03 [dd, $J 5.0$ and $16.0 \mathrm{~Hz}, 4-\mathrm{H}_{\text {eq }}$. F$)$], 2.63 [dd, $J 8.0$ and 16.0 $\mathrm{Hz}, 4-\mathrm{H}_{\mathrm{ax} .}$ (F)], 1.84 [s, 3-OAc(F)], and 1.56 [s, 3-OAc(C)]; m / z $774\left(M^{+}, 10.6 \%\right), 714(58), 683(5.8), 672$ (2.1), 654 (25), 537 (2.2), 521 (32), 492 (25), 461 (10.4), 344 (17.6), 343 (67), 330 (3.1), 329 (0.9), 327 (13.3), 300 (13.6), 299 (63), 222 (2.8), 180 (48), and 151 (100).
(S)-\{(2R,3S)-2,3-trans-3-Acetoxy-8-[(2R,3S)-2,3-trans-3-acetoxy- $3^{\prime}, 4^{\prime}, 7,8$-tetramethoxyflavan-5-yl]-3', $4^{\prime}, 5,7$-tetramethyoxyflavan\} (20). Acetylation of the octamethyl ether, $\boldsymbol{R}_{\mathrm{F}}$ 0.24 , gave the octamethyl ether diacetate (20) as a solid (70 mg), $R_{\mathrm{F}} 0.46$, in 1,2 -dichloroethane-acetone ($9: 1 \mathrm{v} / \mathrm{v}$) and $R_{\mathrm{F}} 0.32$ in n -hexane-acetone-ethyl acetate ($60: 25: 15 \mathrm{v} / \mathrm{v}, \times 3$) (Found: $M^{+}, 774.28658 . \mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{14}$ requires $\left.M, 774.28846\right) ; \delta\left(\mathrm{CDCl}_{3}\right.$; $\left.80 \mathrm{MHz} ; 100^{\circ} \mathrm{C}\right) 7.25-6.66(\mathrm{~m}, 6 \times \mathrm{ArH}), 6.41[\mathrm{~s}, 6-\mathrm{H}(\mathrm{A})], 6.16$ [s, $6-\mathrm{H}(\mathrm{D})], 5.25[\mathrm{~m}, 3-\mathrm{H}$ (C and F)], 4.97 [d, $J 6.25 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{C}$ and F)], 3.84, $3.81(\times 2), 3.78(\times 2)$, $3.75(\times 2)$, and 3.57 (each $\mathrm{s}, 8 \times \mathrm{OMe}), 3.16-2.50\left[\mathrm{~m}, 4-\mathrm{H}_{2}(\mathrm{C}\right.$ and F$\left.)\right], 1.94[\mathrm{~s}, 3-\mathrm{OAc}(\mathrm{C}$ or F$)$], and $1.78[\mathrm{~s}, 3-\mathrm{OAc}(\mathrm{F}$ or C$)]$; c.d. (Figure 1).
(R) $-\{(2 \mathrm{R}, 3 \mathrm{~S})-2,3$-trans-3-Acetoxy-8-[(2R,3S)-2,3-trans-3-acetoxy-3', $4^{\prime}, 7,8$-tetramethoxyflavan-5-yl]-3,, $4^{\prime}, 5,7$-tetramethoxyflavan $\}$ (23).-Plates 5-6 (upper phase) gave a single product, $R_{\mathrm{F}} 0.25,0.47$, on two-way paper chromatograms after resolution on a Sephadex column (tubes 52-60). The
proanthocyanidin test ${ }^{25}$ was negative. Methylation of the phenol (148 mg) followed by purification by p.l.c. in benzeneacetone ($6: 4 \mathrm{v} / \mathrm{v}$) gave an octamethyl ether, $R_{\mathrm{F}} 0.55(47 \mathrm{mg})$ and a heptamethyl ether, $R_{\mathrm{F}} 0.44(18 \mathrm{mg})$. Acetylation of the octamethyl ether followed by p.l.c. in n -hexane-acetone-ethyl acetate ($60: 25: 15 \mathrm{v} / \mathrm{v}, \times 3$) gave the octamethyl ether diacetate (23) as a pale yellow solid, $R_{\mathrm{F}} 0.36(17.1 \mathrm{mg})$ (Found: C, 65.7; H, $6.1 \% ; M^{+}, 774.28735 . \mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{14}$ requires C, $65.1 ; \mathrm{H}, 6.0 \% ; M$, $774.28846) ; \delta\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz} ; 100{ }^{\circ} \mathrm{C}\right) 6.97-6.69[\mathrm{~m}$, $6 \times \operatorname{ArH}(\mathrm{B}$ and E$)], 6.50[\mathrm{~s}, 6-\mathrm{H}(\mathrm{A})], 6.22$ [s, $6-\mathrm{H}(\mathrm{D})], 5.34-4.97$ [m, 3-H(C and F)], 5.25 [d, $J 5.25 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{C}$ or F$)$], 4.91 [d, $J 5.25$ $\mathrm{Hz}, 2-\mathrm{H}(\mathrm{F}$ or C$)], 3.86,3.80(\times 4), 3.75,3.69$, and 3.63 (each s , $8 \times \mathrm{OMe}), 3.97-2.47\left[\mathrm{~m}, 4-\mathrm{H}_{2}\right.$ (C and F$\left.)\right], 1.86[\mathrm{~s}, 3-(\mathrm{OAc}(\mathrm{c} \mathrm{or}$ F)], and 1.81 [s, 3-OAc (F or C)]; c.d. (Figure 1).

The mass fragmentation spectra of the pair of [5,8]-linked atropisomers (23) and (20) are respectively as follows: $m / z 774$ $\left(M^{+}, 100,100 \%\right), 732(12.6,18.2), 715(42,46), 714(61,50), 683$ $(46,47), 672(13.3,14), 656(33,43), 655(61,48), 654(43,46), 553$ (38, 4.4), 552 (7.2, 7.6), 522 (5.2, 5.8), 521 (12.2, 10.7), 510 (14.6, 15.6), $493(59,47), 492(61,49), 479(50,46), 478(24,19.7), 477$ $(56,46), 463(12.5,17), 462(23,29), 461(59,45), 374(12.3,13.6)$, $373(46,44), 359(58,47), 344(57,48), 343(78,68), 342(23,24)$, 333 (13.2, 17.9), $332(49,46), 331(74,67), 330(74,66), 301(3.2$, $49), 300(7.4,49), 270(11.2,11.4), 222(10.6,13.6), 180(65,57)$, and $151(89,90)$.
(R)-\{(2R,3S)-2,3-trans-3,7-Diacetoxy-8-[(2R,3S)-2,3-trans-3-acetoxy-3', 4', 7,8-tetramethoxyflavan-5-yl]-3', $\mathbf{4}^{\prime}, 5$-trimethoxyflavan\} (21). Acetylation of the heptamethyl ether, $R_{\mathrm{F}} 0.44$, obtained during separation of the above compound gave the heptamethyl ether triacetate (21), $R_{\mathrm{F}} 0.29$ in n-hexane-acetoneEtOAc ($60: 25: 15 \mathrm{v} / \mathrm{v} ; \times 3$), as a solid (20 mg) (Found: M^{+}, 802.280 13. $\mathrm{C}_{43} \mathrm{H}_{46} \mathrm{O}_{15}$ requires $M, 802.283$ 67); $\delta\left(\mathrm{CDCl}_{3} ; 300\right.$ $\left.\mathrm{MHz} ; 25^{\circ} \mathrm{C}\right) 6.84$ [d, $J 2.0 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{B})$], 6.83 [dd, $J 2.0$ and 8.0 $\mathrm{Hz}, 6-\mathrm{H}(\mathrm{B})], 6.77$ [d, $J 8.0 \mathrm{~Hz}, 5-\mathrm{H}(\mathrm{E})], 6.74$ [dd, $J 2.0$ and 8.0 Hz , $6-\mathrm{H}(\mathrm{E})], 6.69[\mathrm{~d}, J 2.0 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{E})], 6.68[\mathrm{~d}, J 8.0 \mathrm{~Hz}, 5-\mathrm{H}(\mathrm{B})]$, $6.50[\mathrm{~s}, 5-\mathrm{H}(\mathrm{A})], 6.40[\mathrm{~s}, 6-\mathrm{H}(\mathrm{D})], 5.20[\mathrm{~m}, 2-\mathrm{H}(\mathrm{C})]$ and $3-\mathrm{H}(\mathrm{C}$ and F)], 4.95 [d, $J 4.8 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{F})], 3.88,3.85,3.845,3.81,3.79$, 3.755 , and 3.65 (each s, $7 \times$ OMe), $2.78-2.40\left[\mathrm{~m}, 2 \times 4-\mathrm{H}_{2}(\mathrm{C}\right.$ and F$)], 2.29[\mathrm{~s}, 7-\mathrm{OAc}(\mathrm{D})], 1.95$ and 1.86 [each s, 3-OAc(C and F)]; $m / z 802$ ($M^{+}, 72 \%$), 742 (32), 683 (20), 682 (10.2), 531 (14.2), 503 (12.4), 371 (17.1), 359 (24), 358 (29), 345 (10.2), 329 (23), 328 (10.3), 317 (29), 316 (28), 315 (12.9), 301 (33.6), 285 (11.0), 273 (10.6), 193 (17.4), 180 (53), 175 (15.6), 167 (26), 165 (29), and 151 (100); c.d. $[\theta]_{300} 0,[\theta]_{290}-1100,[\theta]_{280} 0,[\theta]_{250}+4600$, $[\theta]_{227}+56100$, and $[\theta]_{200} 0$.

The content of plates $1-3$ (lower phase) gave a single compound, $R_{\mathrm{F}} 0.46,0.32$, on two-way chromatograms after fractionation on a Sephadex column (tubes 98-118). The proanthocyanidin test was negative. Methylation of the phenol $(140 \mathrm{mg})$ with diazomethane, followed by separation by p.l.c. in benzene-acetone ($7: 3 \mathrm{v} / \mathrm{v}$), gave two products, an octamethyl ether at $R_{F} 0.40(64.3 \mathrm{mg})$ and a heptamethyl ether, $R_{\mathrm{F}} 0.33$ (32.3 mg).
(2R,3S)-2,3-trans-3-Acetoxy-6-[(2R,3S)-2,3-trans-3-acetoxy$3^{\prime}, 4^{\prime}, 7,8$-tetramethoxyflavan-5-yl]-3', $4^{\prime}, 7,8$-tetramethoxyflavan (17). Acetylation of the octamethyl ether, $R_{\mathrm{F}} 0.40$, followed by further purification by p.l.c. in benzene-acetone ($8: 2 \mathrm{v} / \mathrm{v}$) gave the title diacetate (17) as a solid, $R_{\mathrm{F}} 0.47$ (34.5 mg) [Found: M^{+}, 774.285 81. $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{14}$ requires $\left.M, 774.28846\right] ; \delta\left(\mathrm{CDCl}_{3} ; 80\right.$ $\left.\mathrm{MHz} ; 100{ }^{\circ} \mathrm{C}\right) 7.06-6.73$ [m, $6 \times \mathrm{ArH}(\mathrm{B}$ and E$\left.)\right], 6.53$ [br s, $5-\mathrm{H}(\mathrm{D})], 6.47[\mathrm{~s}, 6-\mathrm{H}(\mathrm{A})], 5.34[\mathrm{~m}, 3-\mathrm{H}(\mathrm{C}$ and F$)], 5.16[\mathrm{~d}, J 5.25$ $\mathrm{Hz}, 2-\mathrm{H}(\mathrm{C})], 5.09$ [d, J $5.75 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{F})$], 3.91, 3.89, 3.82 ($\times 2$), $3.81,3.78(\times 2)$, and 3.54 (each s, $8 \times$ OMe), 3.06 [dd, $J \sim 5.0$ and $\sim 16.0 \mathrm{~Hz}, 4-\mathrm{H}_{\text {eq. }}$. F$)$], 2.81 [dd, $J \sim 8.0$ and $\sim 16.0 \mathrm{~Hz}, 4-$ $\left.\mathrm{H}_{\mathrm{ax} .}(\mathrm{F})\right], 2.67\left[\mathrm{~m}, 4-\mathrm{H}_{2}(\mathrm{C})\right], 1.92[\mathrm{~s}, 3-\mathrm{OAc}(\mathrm{C}$ or F$)]$, and $1.88[\mathrm{~s}$, 3-OAc(F or C)]; $m / z 774$ ($M^{+}, 81 \%$), 732 (18.2), 715 (40), 714 (48), 683 (32), 672 (28), 656 (7.6), 655 (13.5), 654 (27), 553 (7.5), 552 (10.2), 551 (5.4), 510 (12.4), 493 (29), 492 (37), 479 (15.9), 478
(13.3), 477 (33), 463 (10.5), 462 (13.9), 461 (26), 374 (2.0), 373 (10.1), 359 (9.3), 344 (18.9), 343 (46), 342 (12.7), 333 (4.9), 332 (46), 331 (45), 330 (38), 301 (26), 300 (8.0), 270 (7.1), 222 (24), 180 (65), and 151 (100); c.d. $[\theta]_{294} 0,[\theta]_{290}-670,[\theta]_{283} 0,[\theta]_{250}$ $+11400,[\theta]_{233}+32900$, and $[\theta]_{200}+3350$.
(2R,3S)-2,3-trans-3,7-Diacetoxy-6-[(2R,3S)-2,3-trans-3-acetoxy- $3^{\prime}, 4^{\prime}, 7,8$-tetramethoxyflavan-5-yl $]-3^{\prime}, 4^{\prime}, 8$-trimethoxyflavan (18). Acetylation of the heptamethyl ether, $R_{\mathrm{F}} 0.33$, followed by p.l.c. of the product in benzene-acetone ($8: 2 \mathrm{v} / \mathrm{v}$) gave the heptamethyl ether triacetate (18) as a solid, $R_{\mathrm{F}} 0.47$ (24.1 mg) (Found: C, 64.3; H, 5.7. $\mathrm{C}_{43} \mathrm{H}_{46} \mathrm{O}_{15}$ requires $\mathrm{C}, 64.3$; $\mathrm{H}, 5.8 \%) ; \delta\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz} ; 100^{\circ} \mathrm{C}\right) 7.02-6.72[\mathrm{~m}, 6 \times \mathrm{ArH}$ (B and E)], 6.55 [$\mathrm{br} \mathrm{s}, 5-\mathrm{H}(\mathrm{D})], 6.38$ [s, $6-\mathrm{H}(\mathrm{A})], 5.38-5.06[\mathrm{~m}, 2-$ H and $3-\mathrm{H}$ (C and F)], 3.89, $3.81(\times 2), 3.80$, and $3.78(\times 3)$ (each $\mathrm{s}, 7 \times \mathrm{OMe}), 3.09\left[\mathrm{dd}, 4-\mathrm{H}_{\mathrm{eq}}\right.$. F$\left.)\right], 2.81$ [dd, $\left.4-\mathrm{H}_{\mathrm{ax} .}(\mathrm{F})\right], 2.70[\mathrm{dd}$, $\left.4-\mathrm{H}_{\text {eq. }}(\mathrm{C})\right], 2.51$ [dd, $4-\mathrm{H}_{\mathrm{ax} .}(\mathrm{C})$], and 1.59 , and $1.57(\times 2)$ [each s, OAc (C, D, and F)]; $m / z 802$ ($M^{+}, 31 \%$), 760 (6.4), 741 (10.1), 682 (15.5), 538 (2.1), 520 (1.9), 478 (15.6), 359 (2.7), 358 (1.3), 317 (15.1), 316 (10.3), 222 (5.3), 180 (63), and 151 (100).

Atropisomeric (2R,3S)-2,3-trans-3-Acetoxy-6,8-bis[(2R,3S)-2,3-trans-3-acetoxy-3', $\mathbf{4}^{\prime}-7,8$-tetramethoxyflavan-5-yl]-
$3^{\prime}, 4^{\prime}, 5,7$-tetramethoxyflavans (27).-The content of plates 1-3 (lower phase) gave indication of the presence of two components, of $R_{F} 0.21,0.51$ and $0.13,0.46$ by two-way paper chromatography, after column chromatographic separation on Sephadex (tubes 126-170). Proanthocyanidins were shown to be absent. Methylation of the free phenolic fraction (278 mg) followed by p.l.c. in dichloromethane-acetone ($8: 2 \mathrm{v} / \mathrm{v}$) gave three products, at $R_{\mathrm{F}} 0.50(63.3 \mathrm{mg}), 0.42(29.3 \mathrm{mg})$, and 0.27 (30.6 mg).

Acetylation of the dodecamethyl ether, $R_{\mathrm{F}} 0.50$, followed by p.l.c. in dichloromethane-acetone ($96: 4 \mathrm{v} / \mathrm{v}$), gave the triacetate (27) as a pale yellow solid, $R_{\mathrm{F}} 0.56$ (50.3 mg) (Found: C, $65.0: \mathrm{H}$, 6.0. $\mathrm{C}_{63} \mathrm{H}_{68} \mathrm{O}_{21}$ requires $\left.\mathrm{C}, 65.2 ; \mathrm{H}, 5.9 \%\right) ; \delta\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right.$; $\left.100^{\circ} \mathrm{C}\right) 7.00-6.63[\mathrm{~m}, 9 \times \mathrm{ArH}(\mathrm{B}, \mathrm{E}$, and H$)], 6.56[\mathrm{~s}, 6-\mathrm{H}(\mathrm{C}$ or G)], 6.53 [$\mathrm{s}, 6-\mathrm{H}(\mathrm{G}$ or C$)], 5.39-5.08(\mathrm{~m}, 5 \times$ heterocyclic H$)$, $4.89[\mathrm{~d}, J 6.5 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{C}, \mathrm{F}$, or I$)], 3.94,3.86(\times 2), 3.84,3.78(\times 3)$, $3.77,3.72,3.63,3.20$, and 3.08 (each s, $12 \times \mathrm{OMe}$), $2.91-2.55$ $\left[\mathrm{m}, 3 \times 4-\mathrm{H}_{2}(\mathrm{C}, \mathrm{F}\right.$, and I$\left.)\right]$, and $1.88,1.85$, and 1.83 [each s , $3 \times 3-\mathrm{OAc}(\mathrm{C}, \mathrm{F}$, and I$)]$; c.d. (Figure 2).

Acetylation of the dodecamethyl ethers, $R_{F} 0.42$, followed by p.l.c. in dichloromethane-acetone $(96: 4 \mathrm{v} / \mathrm{v})$ gave two dodecamethyl ether triacetates, at $R_{\mathrm{F}} 0.60(29.2 \mathrm{mg})$ and 0.54 $(18.8 \mathrm{mg})$.

The $R_{\mathrm{F}} 0.60$ dodecamethyl ether triacetate (27) was isolated as a colourless solid; $\delta\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz} ; 100{ }^{\circ} \mathrm{C}\right) 7.05-6.72[\mathrm{~m}$, $9 \times \operatorname{ArH}(\mathrm{B}, \mathrm{E}$, and H$)], 6.52[\mathrm{~s}, 6-\mathrm{H}(\mathrm{A}$ or G$)], 6.44[\mathrm{~s}, 6-\mathrm{H}(\mathrm{G}$ or н)], $5.44-5.13(\mathrm{~m}, 4 \times$ heterocyclic H), $4.97(\mathrm{~d}, J 7.0 \mathrm{~Hz}, 2-\mathrm{H})$, $4.94(\mathrm{~d}, J 7.0 \mathrm{~Hz}, 2-\mathrm{H}), 3.94,3.86(\times 3), 3.84(\times 3), 3.81,3.78,3.75$, 3.38, and 2.91 (each s, $12 \times \mathrm{OMe}$), 3.38-2.69 (m, $3 \times 4-\mathrm{H}_{2}$), and $1.94,1.91$, and 1.81 (each s, $3 \times 3-\mathrm{OAc}$); c.d. (Figure 2).

The $R_{\mathrm{F}} 0.54$ dodecamethyl ether triacetate (27) was isolated as a colourless solid; $\delta\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz} ; 100^{\circ} \mathrm{C}\right) 7.06-6.67[\mathrm{~m}$, $9 \times \mathrm{ArH}(\mathrm{B}, \mathrm{E}$, and H$)], 6.61[\mathrm{~s}, 6-\mathrm{H}(\mathrm{A}$ or G$)], 6.50[\mathrm{~s}, 6-\mathrm{H}(\mathrm{G}$ or A)], $5.42-5.13(\mathrm{~m}, 4 \times$ heterocyclic H$), 5.03(\mathrm{~d}, J 6.5 \mathrm{~Hz}, 2 \times 2$ H), $3.95,3.86(\times 4), 3.83(\times 3), 3.80,3.66,3.25$, and 3.06 (each s, $12 \times \mathrm{OMe}), 3.06-2.19\left(\mathrm{~m}, 3 \times 4-\mathrm{H}_{2}\right)$, and $2.00,1.80$, and 1.78 (each s, 3×3-OAc); c.d. (Figure 2).

Acetylation of the dodecamethyl ether, $R_{\mathrm{F}} 0.27$, followed by p.l.c. in dichloromethane-acetone ($96: 4 \mathrm{v} / \mathrm{v}$) gave another dodecamethyl ether triacetate (27) as a pale yellow solid, $R_{\mathrm{F}} 0.50$ $(31 \mathrm{mg}) ; \delta\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz} ; 100{ }^{\circ} \mathrm{C}\right) 7.30-6.63(\mathrm{~m}, 9 \times \mathrm{ArH})$, $6.59[\mathrm{~s}, 6-\mathrm{H}(\mathrm{G}$ or A$)], 6.56[\mathrm{~s}, 6-\mathrm{H}(\mathrm{G}$ or A$)], 5.41-5.00(\mathrm{~m}$, $4 \times$ heterocyclic H), $4.91(\mathrm{~d}, J 6.5 \mathrm{~Hz}, 2 \times 2-\mathrm{H}), 3.92,3.89,3.84$, $3.80(\times 4), 3.77(\times 2), 3.64,3.33$, and 3.05 (each s, $12 \times \mathrm{OMe}$), $3.13-2.38\left(\mathrm{~m}, 3 \times 4-\mathrm{H}_{2}\right)$, and $1.84,1.83$, and $1.67($ each s, 3×3 OAc); c.d. (Figure 2).

Mass fragmentation spectra of the dodecamethyl ether triacetates (27) of $R_{F} 0.56,0.60,0.54$, and 0.50 were respectively: $m / z 1160\left(M^{+}, 13.7,49,52.47\right), 1141(13.5,9.5,13.0,-), 1140$ $(-, 2.3,-, 40), 1101(-, 5.6,5.0,7.1), 1100(9.9,18.0,18.2,42)$, $982(2.9,-,-, 9.6), 939(1.1-,-, 2.3), 938(-,-,-, 4.1), 879$ $(2.0,2.8,2.7,6.3), 878(4.5,2.8,3.7,11.9), 847(6.7,3.8,2.6,18.9)$, 820 (2.4, 2.3, 1.9, 9.4), 819 (4.8, 3.2, 3.9, 15.9), 818 (2.1, 1.7, 1.5, 5.9), $773(1.6,1.6,-4.0), 718(3.0,2.1,2.8,10.4), 717(9.0,6.0,5.1$, 32), 716 ($7.5,4.3,57,24$), 658 (8.4, 17.3, 28, 10), 657 ($5.8,3.9,6.4$, 20), 656 (4.0, 3.2, 3.7, 9.0), 653 (2.9, 3.4, 2.3, 2.8), 552 (1.3, 18.7, 14.3, 1.7), 551 (2.2, 13.8, 12.1, 2.5), 497 (23, 70, 18.3, 26), 496 (2.1, $4.1,36,3.8), 495(5.1,6.2,72,9.4), 494$ (3.1, 2.6, 5.9, 4.5), 437 (2.5, $-, 1.6,4.4), 436(2.2,-,-, 2.8), 435(4.4,3.3,2.5,4.9), 434$ (3.9, $1.9,1.5,4.9), 431(3.7,4.0,5.5,3.8), 389(2.3,2.6,2.8,3.5), 387$ (2.6, $6.1,10.8,3.8), 331$ (2.7, 1.8, 3.3, 2.6), 330 (3.0, 2.3, 2.1, 4.0), 329 (2.8, 4.8, 6.4, 12.7), 327 (11.9, 12.7, 10.1, 15.2), 267 (2.7, 38, 27.4, 3.7), 266 ($1.4,11.3,8.9,1.4$), $222(17.6,7.9,11.3,16.3$), $180(52,53$, $66,48), 166(16.6,18.1,16.7,13.3), 165(47,56,59,40)$, and 151 (100, 78, 82, 100)

Synthesis of Biflavanoids with 2,3-trans-3,3', 4',7,8Pentahydroxyflavans as Constituent Units

$(+)$-Mollisacacidin (580 mg) and (+)-2,3-trans- $3^{\prime}, 4^{\prime}, 7,8-$ tetrahydroxyflavan-3-ol (1) (1.74 g) were dissolved in $0.1 \mathrm{~m}-\mathrm{HCl}$ (50 ml) and the solution was stirred for 24 h at ambient temperatures. The course of the reaction was monitored by t.l.c. in benzene-acetone-methanol ($6: 3: 1 \mathrm{v} / \mathrm{v}$). After consumption of most of the $(+)$-mollisacacidin, the reaction mixture was extracted with ethyl acetate ($5 \times 25 \mathrm{ml}$), the extract was dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and the solvent was removed under reduced pressure. The products were resolved by p.l.c. in benzene-acetone-methanol ($6: 3: 1 \mathrm{v} / \mathrm{v}$) to give two compounds, at $R_{\mathrm{F}} 0.34(341 \mathrm{mg})$ and $0.25(1.99 \mathrm{mg})$.

Methylation of the former ($R_{\mathrm{F}} 0.34$) with diazomethane, followed by p.l.c. in benzene-acetone ($7: 3 \mathrm{v} / \mathrm{v}$), gave a single product at $R_{\mathrm{F}} 0.46(174 \mathrm{mg})$. Acetylation of the heptamethyl ethers, followed by p.l.c. in dichloromethane-acetone ($98: 2 \mathrm{v} / \mathrm{v}$), provided two heptamethyl ether diacetate derivatives, at $R_{\mathrm{F}} 0.47$ $(74.6 \mathrm{mg})$ and $0.39(11.7 \mathrm{mg})$.
(2R,3S)-2,3-trans-3-Acetoxy-6-[(2R,3S,4R)-2,3-trans-3,4-cis-3-acetoxy-3',4',7-trimethoxyflavan-4-yl]-3', $\mathbf{4}^{\prime}, 7,8$-tetramethoxyflavan (12). The heptamethyl ether diacetate $R_{F} 0.47$, was isolated as a solid, with ${ }^{1} \mathrm{H}$ n.m.r., mass, and c.d. spectra identical with the derivative of the natural product.
(2R,3S)-2,3-trans-3-Acetoxy-6-[(2R,3S,4S)-2,3-trans-3,4-trans-3-acetoxy- $3^{\prime}, 4^{\prime}, 7$-trimethoxyflavan-4-yl]-3', $4^{\prime}, 7,8$-tetra methoxyflavan. The heptamethyl ether diacetate, $R_{\mathrm{F}} 0.39$, was isolated as a solid (Found: $M^{+}, 744.276$ 97. $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{13}$ requires $M, 744.27791) ; \delta\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz} ; 100^{\circ} \mathrm{C}\right) 7.09-6.33$ $(\mathrm{m}, 8 \times \mathrm{ArH}), 6.44[\mathrm{br} \mathrm{s}, 5-\mathrm{H}(\mathrm{D})], 5.63\left[\mathrm{t}, J_{2,3}=J_{3,4}=9.2 \mathrm{~Hz}\right.$, $3-\mathrm{H}(\mathrm{C})], 5.30[\mathrm{~m}, 3-\mathrm{H}(\mathrm{F})], 5.02$ [d, $J 6.0 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{F})], 4.95$ [d, J $9.2 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{C})], 4.53$ [d, $J 9.2 \mathrm{~Hz}, 4-\mathrm{H}(\mathrm{c})], 3.86,3.81$ ($\times 3$), 3.78 , 3.75 , and 3.72 (each s, $7 \times \mathrm{OMe}$), $3.00\left[\mathrm{dd}, 4-\mathrm{H}_{\text {eq. }}(\mathrm{F})\right], 2.67[\mathrm{dd}$, $4-\mathrm{H}_{\text {ax }}$ (F)], $1.88[\mathrm{~s}, 3-\mathrm{OAc}(\mathrm{F})]$, and 1.63 [s, 3-OAc(C)]; m/z 744 ($M^{+}, 8.8 \%$).
(2R,3S,4S)-2,3-trans-3,4-trans-3-Acetoxy-4-[(2R,3S)-2,3-trans-3-acetoxy-3', $4^{\prime}, 7,8$-tetramethoxyflavan-6-yl]-6-[(2R,3S,4R)-2,3-trans-3,4-cis-3-acetoxy-3', $\mathbf{4}^{\prime}, 7$-trimethoxy-flavan-4-yl]-3', 4',7-trimethoxyflavan. Methylation of the phenolic product, $R_{\mathrm{F}} 0.25$, from the condensation, followed by p.l.c. in 1,2-dichloroethane-acetone ($8: 2 \mathrm{v} / \mathrm{v}$) gave a main product, $R_{\mathrm{F}} 0.37$ (39.3 mg). Acetylation of the decamethyl ether gave the title decamethyl ether triacetate as a solid (39 mg), $R_{\mathrm{F}} 0.19$ in 1,2-dichloroethane-acetone ($95: 5 \mathrm{v} / \mathrm{v}$) (Found: C, 66.4; H, 6.0 . $\mathrm{C}_{61} \mathrm{H}_{64} \mathrm{O}_{19}$ requires $\mathrm{C}, 66.5 ; \mathrm{H}, 5.9 \%$); $\delta\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right.$; $\left.100^{\circ} \mathrm{C}\right) 7.11-6.22(\mathrm{~m}, 12 \times \mathrm{ArH}), 6.47$ [s, $\left.5-\mathrm{H}(\mathrm{D})\right], 6.34[\mathrm{~s}, 8-$ H(D)], 6.28 [br s, $5-\mathrm{H}(\mathrm{G})], 5.62$ [t, $\Sigma J 19.0 \mathrm{~Hz}, 3-\mathrm{H}(\mathrm{F})], 5.48$ [dd,
$J 4.75$ and $6.5 \mathrm{~Hz}, 3-\mathrm{H}(\mathrm{c})], 5.23[\mathrm{~m}, 3-\mathrm{H}(\mathrm{I})], 5.09[\mathrm{~d}, J 6.5 \mathrm{~Hz}, 2-$ $\mathrm{H}(\mathrm{c})], 5.00[\mathrm{~d}, J 9.5 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{F})], 4.94[\mathrm{~d}, J 7.75 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{I})], 4.67$ [d, $J \sim 4.75 \mathrm{~Hz}, 4-\mathrm{H}(\mathrm{c})], 4.56[\mathrm{~d}, J \sim 9.5 \mathrm{~Hz}, 4-\mathrm{H}(\mathrm{F})], 3.84,3.83$, $3.81,3.80(\times 2), 3.78,3.71,3.70$, and $3.66(\times 2)$ (each s , $10 \times \mathrm{OMe}), 3.00\left[\mathrm{dd}, 4-\mathrm{H}_{\text {eq. }}(\mathrm{I})\right], 2.66$ [dd, $\left.4-\mathrm{H}_{\text {ax. }}(\mathrm{I})\right]$, and 1.86 , 1.75 , and 1.61 [each s, 3×3-OAc(C, F, and I)]; $m / z 1041\left(M^{+}\right.$ $-59,42 \%$), $1040\left(M^{+}-60,67\right), 744$ (6.2), 714 (7.1), 713 (1.5), 684 (11.4), 657 (3.5), 656 (5.6), 629 (3.7), 628 (5.1), 492 (5.7), 491 (6.5), 463 (3.5), 449 (3.9), 431 (4.6), 387 (1.3), 357 (2.1), 327 (6.1), 269 (3.2), 222 (5.8), 180 (44), and 151 (100).

Oxidative Dimerization of $(+)$-Mesquitol

(+)-2,3-trans-3, 3', $\mathbf{4}^{\prime}, 7,8$-Pentahydroxyflavan (1) (1.16 g) was dissolved in a solution of acetonitrile-glycine buffer ${ }^{11}(3 \mathrm{ml})$ ($1: 3 \mathrm{v} / \mathrm{v} ; \mathrm{pH} 9$) under N_{2}. A solution of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(2.634 \mathrm{~g})$ dissolved in the same buffer (6 ml) at $0^{\circ} \mathrm{C}$ was added dropwise during 0.5 h and the mixture was kept under N_{2} at ambient temperature for 48 h . After acidification the solution was extracted with EtOAc, and solids recovered from the extract were subjected to column chromatography on Sephadex LH-20 with ethanol as eluant. The fractions were grouped as follows: 1 (tubes 26-30), $2(31-36), 3(60-75), 4(80-94), 5(95-115), 6$ (116-135), $7(136-150)$, and $8(165-225)$.

Fraction $1(100.8 \mathrm{mg})$ consisted of the unchanged flavan-3-ol; fraction $2(10.1 \mathrm{mg})$ gave (+)-2,3-trans- $3^{\prime}, 4^{\prime}, 7,8$-tetramethoxydihydroflavonol after methylation; fraction 5 gave a mixture of methyl ethers (110 mg) after methylation. Resolution by p.l.c. in dichloromethane-acetone ($87: 13 \mathrm{v} / \mathrm{v}$) gave three fractions, at $R_{F} 0.37(55.4 \mathrm{mg}), 0.28(17.8 \mathrm{mg})$, and $0.19(10.3 \mathrm{mg})$. The products of acetylation of each of the $R_{F} 0.28$ and 0.19 methyl ethers gave two products, at $R_{F} 0.33$ and 0.27 in benzeneacetone ($9: 1 \mathrm{v} / \mathrm{v}$).
(2R,3S)-2,3-trans-3-Acetoxy-5-[(2R,3S)-2,3-trans-3-acetoxy$3^{\prime}, 4^{\prime}, 7,8$-tetramethoxyflavan-5-yl]-3',4',7,8-tetramethoxyflavan (25). The octamethyl ether diacetates, $R_{\mathrm{F}} 0.33$ and 0.27 , were interconvertible, giving a single ${ }^{1} \mathrm{H}$ n.m.r. spectrum which differed from those of the [5,8]-biphenyl-type atropisomers (20) and (23) derived from P. glandulosa. The title compound was isolated as a solid (Found: $M^{+}, 774.28272 . \mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{14}$ requires $M, 774.28846) ; \delta\left(\mathrm{CDCl}_{3} ; 300 \mathrm{MHz} ; 24^{\circ} \mathrm{C}\right) 6.40$ [s, $6-\mathrm{H}$ (A or D), 6.29 [s, 6-H(D or A)], $3.905(\times 2), 3.85,3.845,3.823$, $3.82,3.797$, and 3.767 (each s, $8 \times \mathrm{OMe}$), and 1.95 and 1.96 [each s, 2×3-OAc(C and F)]; $\delta\left(\mathrm{C}_{6} \mathrm{D}_{6} ; 300 \mathrm{MHz} ; 25^{\circ} \mathrm{C}\right)^{*}$ 7.003 [dd, $J 2.0$ and $8.0 \mathrm{~Hz}, 6-\mathrm{H}(\mathrm{B})], 6.98$ [d, $J 2.0 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{B})$], 6.935 [d, $J 2.0 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{E})], 6.87$ [dd, $J 2.0$ and $8.5 \mathrm{~Hz}, 6-\mathrm{H}(\mathrm{E})$], $6.525[\mathrm{~d}, J \sim 8.5 \mathrm{~Hz}, 5-\mathrm{H}(\mathrm{E})], 6.51[\mathrm{~s}, 6-\mathrm{H}(\mathrm{D}$ or A$)], 6.48[\mathrm{~d}, J 8.0$ $\mathrm{Hz}, 5-\mathrm{H}(\mathrm{B})], 6.41$ [s, $6-\mathrm{H}(\mathrm{A}$ or D$)], 5.685$ [m, $3-\mathrm{H}(\mathrm{c})], 5.48$ [m, $3-\mathrm{H}(\mathrm{F})], 5.37$ [d, $J 5.5 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{C})], 5.33$ [d, $J 5.5 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{F})]$, $4.00,3.99,3.45,3.42,3.365,3.355,3.32$, and 3.31 (each s , $8 \times$ OMe), 2.92 [dd, $J 4.0$ and $16.0 \mathrm{~Hz}, 4-\mathrm{H}_{\text {eq. }}$ (C)], 2.75 [dd, J 6.2 and $16.0 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{ax}}$. (C)], 2.59 [dd, $J 5.8$ and $16.5 \mathrm{~Hz}, 4-$ $\mathrm{H}_{\mathrm{ax} .}$ (F)], 2.45 [dd, $J 4.8$ and $16.5 \mathrm{~Hz}, 4-\mathrm{H}_{\text {eq. }}$. F$)$], 1.615 [s, 3-OAc(C or F)], and 1.51 [s, 3-OAc(F or C)]; $m / z 774$ ($M^{+}, 29 \%$), 714 (18.7), 655 (10.0), 654 (9.9), 505 (7.0), 503 (5.4), 492 (6.1), 479 (7.0), 343 (4.0), 331 (5.4), 330 (3.8), 301 (4.5), 246 (3.4), 193 (21), $180(22), 167(15.7)$, and 151 (100); c.d. $[\theta]_{200}+2000,[\theta]_{220}$ $+18800,[\theta]_{227}+28000,[\theta]_{240}+10300,[\theta]_{250}+2300$, $[\theta]_{260}+2300,[\theta]_{270}+2300,[\theta]_{280} 0,[\theta]_{290}-700$, and $[\theta]_{300} 0$.
(2R,3S)-2,3-trans-3-Acetoxy-6-[(2R,3S)-2,3-trans-3-acetoxy$3^{\prime}, 4^{\prime}, 7,8$-tetramethoxyflavan-5-yl]-3', $4^{\prime}, 7,8$-tetramethoxyflavan (17). Fraction 7 gave a solid (89.8 mg) after methylation. P.l.c. of the product in n-hexane-acetone-ethyl acetate ($50: 35: 15 \mathrm{v} / \mathrm{v}$)

[^9]gave two octamethyl ethers, at $R_{F} 0.40$ and 0.48 . These were acetylated independently and the octamethyl ether diacetates were each separated by p.l.c. in 1,2-dichloroethane-acetone ($95: 5 \mathrm{v} / \mathrm{v}$) into two products, at $R_{\mathrm{F}} 0.31(1.9 \mathrm{mg})$ and $0.25(27.3$ mg). In solution they gave identical ${ }^{1} \mathrm{H}$ n.m.r. spectra, in complete agreement with that of the derivative of the $[5,6]$ linked natural compound isolated from P. glandulosa.

Mutual Condensation of $(+)$-Mesquitol and $(+)$-Catechin

$(+)$-Mesquitol (1) (1.16 g) and (+)-catechin (1.16 g) were dissolved in a $1: 3(\mathrm{v} / \mathrm{v})$ acetonitrile-glycine buffer (60 ml) (pH 9) under N_{2} as before. A solution of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(13.92 \mathrm{~g})$ in the same buffer (80 ml) was added, and the reaction was allowed to proceed at ambient temperature for 2 h , after which the mixture was acidified and extracted with EtOAc $(5 \times 200 \mathrm{ml})$. The extractives were resolved on a Sephadex LH-20 column $(3.5 \times 36.5 \mathrm{~cm})$ with ethanol as eluant. Fractions (15 ml each) were collected and grouped as follows: $6-11(229 \mathrm{mg}), 17-36$ (281), $37-45(194), 46-72(218), 73-86(33.7), 87-104$ (66.3), 105-147 (177), and 148-187 (237).

Fractions 17-45 were combined and methylated with diazomethane. The methyl ethers (476 mg) were separated by p.l.c. in dichloromethane-acetone-methanol (95:4:1 v/v, $\times 5$) to give two products, at $R_{F} 0.32(57.1 \mathrm{mg})$ and $0.28(75.4 \mathrm{mg})$. Each methyl ether was acetylated and the products were separated by p.l.c. in n-hexane-acetone-EtOAc (60:25:15 v/v, $\times 3)$. The octamethyl ether diacetate, $R_{F} 0.36(53.3 \mathrm{mg})$, derived from the former proved to be identical with derivative (23) of (R)-[5,8]-(+)-mesquitol-(+)-catechin from P.glandulosa. the corresponding (S)-conformer, $R_{F} 0.32(75.6 \mathrm{mg})$ was derived from the latter and proved to be identical with compound (20).

Combination of fractions 73-104, followed by methylation, gave a mixture of octamethyl ethers (117.4 mg). These were resolved by p.l.c. in dichloromethane-acetone ($8: 2 \mathrm{v} / \mathrm{v}$) into two products, at $R_{F} 0.51(3.4 \mathrm{mg})$ and $0.40(13.9 \mathrm{mg})$. Acetylation of each gave octamethyl ether diacetates, at $R_{F} 0.42(3.5 \mathrm{mg})$ and $0.48(14.1 \mathrm{mg})$ respectively. The latter proved to be identical with the [5,6]-bi-(+)-mesquitol derivative (17).
(2R,3S)-2,3-trans-3-Acetoxy-6-[(2R,3S)-2,3-trans-3-acetoxy$3^{\prime}, 4^{\prime}, 7,8$-tetramethoxyflavan-5-yl]-3', 4',5,7-tetramethoxyflavan (24). The title compound, $R_{\mathrm{F}} 0.42$, was isolated as a solid (Found: $M^{+}, 774.28272 . \mathrm{C}_{43} \mathrm{H}_{46} \mathrm{O}_{14}$ requires $\left.M, 774.28846\right) ; \delta\left(\mathrm{CDCl}_{3}\right.$; $300 \mathrm{MHz} ; 25^{\circ} \mathrm{C}$) 6.93 [dd, $J 2.0$ and $\left.8.0 \mathrm{~Hz}, 6-\mathrm{H}(\mathrm{B})\right], 6.89$ [d, J $2.0 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{B})], 6.875$ [dd, $J 2.0$ and $8.0 \mathrm{~Hz}, 6-\mathrm{H}(\mathrm{E})], 6.855$ [d, J $2.0 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{E})], 6.84$ [d, $J 8.0 \mathrm{~Hz}, 5-\mathrm{H}(\mathrm{E})], 6.77[\mathrm{~d}, J 8.0 \mathrm{~Hz}$, $5-\mathrm{H}(\mathrm{B})], 6.475[\mathrm{~s}, 6-\mathrm{H}(\mathrm{A})], 6.365$ [s, $8-\mathrm{H}(\mathrm{D})], 5.32[\mathrm{~m}, 3-\mathrm{H}(\mathrm{F})]$, 5.26 [quartet, $J 5.5 \mathrm{~Hz}, 3-\mathrm{H}(\mathrm{C})], 5.23$ [d, $J 5.5 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{C})], 4.955$ [d, $J 7.8 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{F})$], $3.94,3.87^{*}, 3.83(\times 2), 3.80,3.70$, and 3.145 (each s, $8 \times \mathrm{OMe}$), 3.00 [dd, $J 5.5$ and $16.0 \mathrm{~Hz}, 4-\mathrm{H}_{\text {eq. }}$. F$)$], 2.73 [dd, $J 8.0$ and $16.0 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{ax} .}$. F$)$], 2.567 and 2.563 [each d, $J 5.5$ $\left.\mathrm{Hz}, 4-\mathrm{H}_{2}(\mathrm{C})\right]$, and 1.955 and 1.925 [each s, $2 \times 3-\mathrm{OAc}(\mathrm{C}$ and F)]; $m / z 774$ ($M^{+}, 39 \%$), 714 (25), 552 (5.8), 492 (5.1), 387 (1.3), 330 (2.5), 327 (6.7), 222 (3.6), 180 (38), and 151 (100).

Biflavanoid Synthesis Using 4-Functionalized (+)-Mesquitol Tetramethyl Ether Acetate as Electrophile

A stirred solution of (+)-mesquitol tetramethyl ether $(1.038 \mathrm{~g}, 3$ mmol) in pure anhydrous $\mathrm{CHCl}_{3}(100 \mathrm{ml})$ was treated dropwise under \mathbf{N}_{2} with a solution of 2,3-dichloro-5,6-dicyano-1,4benzoquinone (DDQ) ($1.362 \mathrm{~g}, 6 \mathrm{mmol}$) in methanol (20 ml). The mixture was stirred for a further 5 h after which time the DDQ was destroyed with NaBH_{4} (cf. ref. 23). Water (200 ml) was added and the solution was extracted with $\mathrm{CHCl}_{3}(3 \times 50$ ml). The solid extractives were acetylated, and the acetates were separated by p.l.c. on 160 plates in n-hexane-acetone-EtOAc

[^10]($60: 25: 15 \mathrm{v} / \mathrm{v}$) to give two fractions, at $R_{\mathrm{F}} 0.48(461 \mathrm{mg}), 3-O$ -acetyl-3', $4^{\prime}, 7,8$-tetra- O-methylmesquitol (2), and 0.42 (224 mg).
(2R,3S,4S)-3-Acetoxy- $3^{\prime}, 4,4^{\prime}, 7,8$-pentamethoxyflavan. The title product, $R_{F} 0.42$, of 2,3-trans-3,4-cis configuration, was isolated as a solid, $R_{\mathrm{F}} 0.42$ (Found: $\mathrm{M}^{+}, 418.16587 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{8}$ requires $\mathrm{M}, 418.16836) ; \delta\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz} ; 30^{\circ} \mathrm{C}\right) 7.00[\mathrm{dd}, J$ 2.0 and $8.0 \mathrm{~Hz}, 6-\mathrm{H}($ в $)], 6.94$ [overlap, $2-\mathrm{H}($ B $)], 6.91[\mathrm{~d}, J 8.5 \mathrm{~Hz}$, $5-\mathrm{H}(\mathrm{A})], 6.81[\mathrm{~d}, J 8.5 \mathrm{~Hz}, 5-\mathrm{H}(\mathrm{B})], 6.53[\mathrm{~d}, J 8.5 \mathrm{~Hz}, 6-\mathrm{H}(\mathrm{A})]$, $5.37[\mathrm{~s}, J<1 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{c})], 5.34[\mathrm{~d}, J 2.5 \mathrm{~Hz}, 3-\mathrm{H}(\mathrm{c})], 4.34[\mathrm{~d}, J 2.5$ $\mathrm{Hz}, 4-\mathrm{H}(\mathrm{c})], 3.84(\times 2)$, 3.81, and 3.79 (each s, $4 \times \mathrm{ArOMe}$), 3.42 [s, 4-OMe(c)], and 1.94 [s,3-OAc(c)].

A solution of the aforementioned 3 -acetoxy- $3^{\prime}, 4,4^{\prime}, 7,8$ pentamethoxyflavan ($224 \mathrm{mg}, 0.54 \mathrm{mmol}$) and (+)-catechin ($280 \mathrm{mg}, 1 \mathrm{mmol}$) in methanol $(10 \mathrm{ml})$ was treated with $\mathrm{M}-\mathrm{HCl}$ and the mixture was kept at $45^{\circ} \mathrm{C}$ for 5 days. The solution was filtered through Celite, and concentrated, water (100 ml) was added, and the mixture was extracted with EtOAc. After recovery the extractives were methylated and the octamethyl ethers were purified by p.l.c. in 1,2-dichloroethane-acetone ($85: 15 \mathrm{v} / \mathrm{v}$) to give a single fraction at $R_{\mathrm{F}} 0.23(105.8 \mathrm{mg})$. After acetylation the octamethyl ether diacetates were separated by p.l.c. in benzene-acetone ($9: 1 \mathrm{v} / \mathrm{v}$) into two fractions, at $R_{\mathrm{F}} 0.24$ $(69.7 \mathrm{mg})$ and $0.32(16.1 \mathrm{mg})$.

Re-separation of the $R_{F} 0.24$ fraction (35 mg) on 20 Merck DC-Fertigplatten Kieselgel $60 \mathrm{~F}_{254}$ in benzene-1,2-dichloro-ethane-acetone ($40: 55: 5 \mathrm{v} / \mathrm{v}, \times 4$) gave two compounds, at R_{F} $0.26(16.2 \mathrm{mg})$ and $0.21(7 \mathrm{mg})$.
(2R,3S)-2,3-trans-3-Acetoxy-8-[(2R,3S,4S)-2,3-trans-3,4-trans-3-acetoxy- $3^{\prime}, 4^{\prime}, 7,8$-tetramethoxyflavan-4-yl]$3^{\prime}, 4^{\prime}, 5,7$-tetramethoxyflavan (6). The octamethyl ether diacetate, $R_{\mathrm{F}} 0.26$, was isolated as a solid (Found: $M^{+}, 774.282$ 72. Calc. for $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{14}: M, 774.28846$), which proved to be identical with the corresponding derivative of the natural product.
[4,8]-2,3-trans-3,4-cis:2,3-trans Isomer. The isomeric octamethyl ether diacetate, $R_{\mathrm{F}} 0.21$, was isolated as a solid (Found: $M^{+}, 774.28272 . \quad \mathrm{C}_{42} \mathrm{H}_{46} \mathrm{O}_{14}$ requires $M, 774.28846$); δ $\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz} ; 95^{\circ} \mathrm{C}\right) 7.09-6.63(\mathrm{~m}, 6 \times \mathrm{ArH}), 6.50[\mathrm{br} \mathrm{d}$, $J 8.5 \mathrm{~Hz}, 5-\mathrm{H}(\mathrm{A})], 6.34[\mathrm{~d}, J 8.5 \mathrm{~Hz}, 6-\mathrm{H}(\mathrm{A})], 6.19[\mathrm{~s}, 6-\mathrm{H}(\mathrm{D})]$, 5.58 [dd, $J 6.0$ and $9.0 \mathrm{~Hz}, 3-\mathrm{H}(\mathrm{c})], 5.33$ [d, J $9.0 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{c})]$, $3.84(\times 4), 3.79(\times 3)$, and 3.78 (each s, $8 \times$ OMe), $1.91[s, 3-$ $\mathrm{OAc}(\mathrm{F})]$, and 1.78 [s,3-OAc(c)] (other resonances could not be distinguished due to base-line noise).

Re-separation of the $\dot{R}_{F} 0.32$ fraction on 8 Merck DCFertigplatten Kieselgel $60 \mathrm{~F}_{254}$ in benzene-acetone-methanol (84:14:2 v/v, $\times 3$) gave two products, at $R_{F} 0.31(4 \mathrm{mg})$ and 0.28 (7.1 mg).
[4,6]-2,3-trans-3,4-trans:2,3-trans Isomer. The octamethyl ether diacetate, $R_{\mathrm{F}} 0.28$, was isolated as a solid (Found: M^{+}, $774.28272) ; \delta\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz} ; 95^{\circ} \mathrm{C}\right) 7.19-6.81(\mathrm{~m}, 6 \times \mathrm{ArH})$, $6.44[\mathrm{~s}, 5-\mathrm{H}(\mathrm{A})+6-\mathrm{H}(\mathrm{A})], 6.33[\mathrm{~s}, 8-\mathrm{H}(\mathrm{D})], 5.99[\mathrm{t}, \Sigma J 19.0 \mathrm{~Hz}$, $3-\mathrm{H}(\mathrm{C})], 5.37$ [m, 3-H(F)], 4.98 [d, J $7.25 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{F})], 4.94$ [d, J $9.5 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{C})], 4.83[\mathrm{~d}, J 9.5 \mathrm{~Hz}, 4-(\mathrm{H}(\mathrm{C})], 4.03(\times 2), 3.84$ $(\times 2), 3.83,3.80(\times 2)$, and 3.61 (each $\mathrm{s}, 8 \times \mathrm{OMe}$), 3.19 [dd, J 5.25 and $16.0 \mathrm{~Hz}, 4-\mathrm{H}_{\text {eq. }}$ (F)], 2.80 [dd, $J 7.8$ and $16.0 \mathrm{~Hz}, 4$ $\left.\mathrm{H}_{\mathrm{ax} .}(\mathrm{F})\right], 1.93$ [s,3-OAc(F)], and 1.66 [s,3-OAc(C)].
[4,6]-2,3-trans-3,4-cis: 2,3-trans Isomer. The octamethyl ether diacetate, $R_{F} 0.31$, was isolated as a solid (Found: \boldsymbol{M}^{+}, $774.28272) ; \delta\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz} ; 95^{\circ} \mathrm{C}\right) 7.09-6.75(\mathrm{~m}$, $6 \times \mathrm{ArH}), 6.59$ [br d, $J 8.0 \mathrm{~Hz}, 5-\mathrm{H}(\mathrm{A})], 6.44$ [d, J 8.0 Hz , $6-\mathrm{H}(\mathrm{A})], 6.34[\mathrm{~s}, 8-\mathrm{H}(\mathrm{D})], 5.56[\mathrm{dd}, \Sigma J 15.0 \mathrm{~Hz}, 3-\mathrm{H}(\mathrm{C})], 5.41[\mathrm{~m}$, $3-\mathrm{H}(\mathrm{F})], 5.35$ [d, $J \sim 6.25 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{F})], 5.32[\mathrm{~d}, J 8.5 \mathrm{~Hz}, 2-\mathrm{H}(\mathrm{C})]$, 5.08 [br d, J $6.25 \mathrm{~Hz}, 4-\mathrm{H}(\mathrm{C})], 3.94,3.87(\times 3)$, and $3.84(\times 4)$ (each $\mathrm{s}, 8 \times \mathrm{OMe}$), $3.22-2.72\left[\mathrm{~m}, 4-\mathrm{H}_{2}(\mathrm{~F})\right], 2.00[\mathrm{~s}, 3-\mathrm{OAc}(\mathrm{F})]$, and 1.75 [s, 3-OAc(c)].

Mass fragmentation spectra of the above compounds in the sequence $[4,8]-3,4$-trans, $[4,8]-3,4$-cis, $[4,6]-3,4$-trans, and $[4,6]-$ 3,4-cis are: $m / z 774\left(M^{+}, 24,40,7.9,32 \%\right), 715(42,12.3,60,18.9)$, $714(100,35,100,34), 655(19.4,9.2,4.1,0.9), 654(42,12.4,11.9$,
3.0), 623 (21, 5.2, 4.8, 1.6), 552 (1.7, 8.7, 1.3, 1.9), 537 (5.3, 52, 4.5, 58), $521(39,85,40,100), 493(21,24,7.5,5.2), 492(35,48,6.0$, 4.4), 477 ($23,11.9,40,4.9$), 461 (13.4, 6.3, 14.2, 5.7), 387 ($0.7,3.0$, $1.5,2.6), 343$ ($8.9,89,16.3,17.1$), 331 (5.5, 6.7, 0.9, 4.0), 330 (3.2, $1.8,1.1,1.7), 328(4.9,9.2,5.7,7.4), 327$ (23, 20, 21, 16.9), 301 $(12.6,16.6,5.4,9.4), 300(17.3,19.6,12.8,11.3), 299(85,88,60$, $76), 222(5.5,4.2,2.1,6.3), 180(42,44,54,51)$, and $151(99,100,96$, 99).

Self-Condensation of 3,3,4',7,8-Pentahydroxyflavan with Ring Fission

The flavan-3-ol (1) (1.16 g) was dissolved in dioxane- $2 \mathrm{M}-\mathrm{HCl}(3$ $\mathrm{ml}) 1: 4 \mathrm{v} / \mathrm{v}$) and the solution was kept at ambient temperature under \mathbf{N}_{2} for 24 h (cf. ref. 13). The acidic solution was neutralized with excess of aqueous sodium hydrogencarbonate, and was then repeatedly extracted with EtOAc $(3 \times 100 \mathrm{ml})$. The extracted product was methylated, and the tetramethyl ether of the unchanged flavan (874 mg) was partly removed by crystallization from ethanol. The remainder was resolved by p.l.c. in n-hexane-acetone-EtOAc (50:35:15 $\mathrm{v} / \mathrm{v}, \times 3$) to give two products of condensation, at $R_{\mathrm{F}} 0.33(15.8 \mathrm{mg})$ and 0.22 $(33.8 \mathrm{mg})$. Independent acetylation followed by p.l.c. in n -hexane-acetone-EtOAc $(60: 20: 15 \mathrm{v} / \mathrm{v}, \times 2)$ gave the respective methyl ether acetates, at $R_{\mathrm{F}} 0.31(5.9 \mathrm{mg})$ and $0.24(20.3 \mathrm{mg})$.
(2R,3S)-2,3-trans-3-Acetoxy-6-[(1S,2R)-2-acetoxy-1-(3,4-dimethoxyphenyl)-3-(2,3,4-trimethoxyphenyl)propyl]-
$3^{\prime}, 4^{\prime}, 7,8$-tetramethoxyflavan (15). This compound, $R_{F} 0.24$, isolated as a solid, gave ${ }^{1} \mathrm{H}$ n.m.r. $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; 25^{\circ} \mathrm{C}\right)$ and mass fragmentation spectra identical with those of its natural counterpart (15).

The $R_{\mathrm{F}} 0.31$ methyl ether acetate proved to be the decamethyl ether acetate (14) of the same condensation product in which $3-\mathrm{OMe}$ replaced 3-OAc, $\delta\left(\mathrm{CDCl}_{3} ; 300 \mathrm{MHz} ; 25^{\circ} \mathrm{C}\right) 7.02$ [br s, $5-\mathrm{H}(\mathrm{D})], 6.91-6.84[\mathrm{~m}, 4 \times \mathrm{H}, 2-\mathrm{H}$ and $6-\mathrm{H}$ (B and E)], 6.82 [d, $J 8.5 \mathrm{~Hz}, 5-\mathrm{H}(\mathrm{A})], 6.79,6.76$ [each d, $J 8.0 \mathrm{~Hz}, 5-\mathrm{H}$ (B and E)], $6.545[\mathrm{~d}, J 8.5 \mathrm{~Hz}, 6-\mathrm{H}(\mathrm{A})], 5.29[\mathrm{~m}, 3-\mathrm{H}(\mathrm{F})], 5.10[\mathrm{~d}, J 6.5 \mathrm{~Hz}, 2-$ $\mathrm{H}(\mathrm{F})], 4.34$ [d, $J 7.8 \mathrm{~Hz}, 1-\mathrm{H}], 3.995(\mathrm{~m}, 2-\mathrm{H}), 3.855,3.845(\times 3)$, $3.820,3.805,3.780(\times 2)$, and 3.700 (each s, $9 \times \mathrm{ArOMe}$), 3.01, $2,85,2.77,2,58$ [each dd, $3-\mathrm{H}_{2}$ and $4-\mathrm{H}_{2}$ (F)], 2.930 (s, 3-OMe), and $1.930[\mathrm{~s}, 3-\mathrm{OAc}(\mathrm{F})]$.

Acknowledgements

Support by the Foundation for Research Development, C.S.I.R., Pretoria and by the Sentrale Navorsingsfonds of this University is acknowledged.

References

1 H. D. Locksley, Fortschr. Chem. Org. Naturst., 1973, 30, 207.
2 K. Weinges, W. Bähr, W. Ebert, K. Göritz, and H.-D. Marx, Fortschr. Chem. Org. Naturst., 1969, 27, 158.
3 L. Vuatez and H. Brandenberger, J. Chromalogr., 1961, 5, 17.
4 B.-Z. Ahn and F. G. Stirner, Arch. Pharm. (Weinheim, Ger.), 1971, 304, 666.
5 B.-Z. Ahn, Arch. Pharm. (Weinheim, Ger.), 1974, 307, 186.
6 E. Jacobs, D. Ferreira, and D. G. Roux, Tetrahedron Lett., 1983, 24, 4627.

7 G. Nonaka and I. Nishioka, Chem. Pharm. Bull., 1981, 28, 3145.
8 E. L. Eliel, 'Stereochemistry of Carbon Compounds,' McGraw-Hill, New York, 1962, p. 177.
9 G. Aulin-Erdtman and R. Sanden, Acta Chem. Scand., 1963, 17, 1991.
10 P. L. Sorensen, Biochem. Z., 1909, 21, 131; 1909, 22, 352.
11 H. K. L. Hundt and D. G. Roux, J. Chem. Soc., Perkin Trans. 1, 1981, 1227.

12 D. R. Armstrong, C. Cameron, D. C. Nonhebel, and P. G. Perkins, J. Chem. Soc., Perkin Trans. 2, 1983, 563, 575, 581.
13 A. Makriyannis and S. Fesik, J. Am. Chem. Soc., 1982, 104, 6462.
14 K. Freudenberg and K. Weinges, Justus Liebigs Ann. Chem., 1963, 668, 92; K. Freudenberg and J. M. Alonso de Lama, ibid., 1958, 612, 78.

15 J. H. van der Westhuizen, D. Ferreira, and D. G. Roux, J. Chem. Soc., Perkin Trans. 1, 1981, 1220.
16 J. J. Botha, D. Ferreira, and D. G. Roux, J. Chem. Soc., Perkin Trans. 1, 1981, 1235.
17 J. Dale, Acta Chem. Scand., 1957, 11, 650.
18 D. Buza and W. Polaczkowa, Tetrahedron, 1965, 21, 3407.
19 K. Mislow, E. Brunnenberg, K. Records, K. Wellman, and C. Djerassi, J. Am. Chem. Soc., 1963, 85, 1342.
20 J. R. Platt, J. Chem. Phys., 1949, 17, 484.
21 N. Harada and K. Nakanishi, 'Circular Dichroic Spectroscopy. Exciton Coupling in Organic Chemistry,' Oxford University Press, Oxford, 1983, pp. 195-200.
22 T. G. Stone and W. A. Waters, J. Chem. Soc., 1964, 213.
23 J. A. Steenkamp, D. Ferreira, and D. G. Roux, Tetrahedron Lett., 1985, 26, 3045.
24 D. G. Roux, J. Am. Leather Chem. Assoc., 1958, 53, 384.
25 W. Pigman, E. Anderson, R. Fischer, M. A. Buchanan, and B. L. Browning, Trans. Paper Pulp Inst., 1953, 36, 4 (Chem. Abstr. 1953, 47, 108446).

[^0]: + Part 16, D. A. Young, H. Kolodziej, D. Ferreira, and D. G. Doux, J. Chem. Soc., Perkin Trans. 1, 1985, 2537.
 \ddagger Although previously isolated from Piptadenia macrocarpa by Miyauchi et al., its structure was 'inferred' from the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of its acetate without reference to configuration [Y. Miyauchi, T. Yashimoto, and K. Minami, Mokuzai Gakkaishi, 1976, 22, 47 (Chem. Abstr., 1976, 84, 147704e)].

[^1]: $\S 1 \mathrm{kcal}=4.185 \mathrm{~kJ}$.
 Absolute stereochemistry about the biphenyl link is defined by n.O.e. difference spectroscopy (see later).

[^2]: * Corrected formula (see later).

[^3]: - The structure of its octamethyl ether diacetate (24) was substantiated by n.O.e. difference spectroscopy (Scheme 4), and by the chemical shift of $8-\mathrm{H}(\mathrm{D}), \delta 6.36$ (cf. ref. 11).
 \dagger Identical associations were also observed for the remaining atropisomers of $\boldsymbol{R}_{\mathrm{F}} 0.54,0.56$, and 0.60 .

[^4]: *The AB-system ($J_{5.6} 8.5 \mathrm{~Hz} ; 5-\mathrm{H}, \delta 6.72 ; 6-\mathrm{H}, \delta 6.53$) of (+)-mesquitol tetramethyl ether acetate (2) exhibits relative broadening of $5-\mathrm{H}$ as the result of benzylic coupling with $4-\mathrm{H}_{2}$.

[^5]: \dagger Corresponding shielding is significantly absent from the spectrum of the heptamethyl triacetyl derivative (18) where 7-OAc(D) replaces 7OMe(D).
 \ddagger Identified by n.O.e. difference spectrometry.

[^6]: * The reaction runs to completion during 2.5 h .

[^7]: * Mass spectrometry assists in differentiating between these configurations in terms of $M^{+}-60: M^{+}$ratios of $12: 1 / 4: 1$ and $1: 1 / 1: 1$ respectively (cf. ref. 15).

[^8]: * $(2 R, 3 S)$-2,3-trans-3-Acetoxy-6-[(1S,2R)-2-acetoxy-1-(3,4-dimethoxyphenyl)-3-(2,3,4-trimethoxyphenyl)propyl]-3', ${ }^{\prime}$, 7,8-tetramethoxyflavan.

[^9]: * The allocations ABC and DEF are obviously interchangeable, but nevertheless indicate intraflavanyl associations of resonances attributable to each unit.

[^10]: * Two signals are observed.

